首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have expressed receptor-binding domains of human alpha 2-macroglobulin and rat alpha 1-macroglobulin in Escherichia coli. Expression levels of both recombinants were quite high, but the human one was insoluble, probably forming inclusion bodies. The rat domain, which lacks the human disulfide, was produced in a soluble form and readily purified by two simple chromatographic steps. Purified recombinant rat alpha 1-macroglobulin receptor-binding domain was fully functional in binding to the alpha-macroglobulin receptor on human fibroblasts. This 142 residue domain should serve as an excellent template for analyzing the structural requirements for alpha-macroglobulin receptor ligation and dissecting the varied biological functions resulting from such ligation.  相似文献   

2.
The extracellular domain (edMpl) of human thrombopoietin (TPO) receptor, c-Mpl was expressed in Escherichia coli by changing some nucleotides before and after the translation initiation codon. The mutations increased the expression by approx. 15-fold. The inclusion bodies were solubilized in 8 M guanidine-HCl under reducing conditions and refolded using a glutathione-redox system. The monomeric form of edMpl was purified to near homogeneity by two successive steps of ion-exchange chromatography using DEAE-Sephacel and Mono Q columns. The purified monomeric edMpl inhibited the TPO-dependent cell proliferation, suggesting that it was binding to TPO. Also, antisera raised against the edMpl bound specifically to the soluble receptor secreted by mammalian cells.  相似文献   

3.
Direct expression of the cytokine receptor homology (CRH) domain of granulocyte-colony-stimulating factor (G-CSF) receptor is lethal to Escherichia coli. For the efficient and stable production of an active CRH domain in E. coli, we fused the CRH domain with different proteins, such as maltose-binding protein (MalE), glutathione S-transferase, and thioredoxin (Trx). Among these, Trx appeared to be the best in terms of the protein expression level, purification efficiency by affinity chromatography, and binding activity to its ligand, G-CSF. The yield of active Trx-CRH fusion protein increased about 200-fold compared to that of previously reported MalE-CRH fusion.  相似文献   

4.
The immunoglobulin superfamily protein neurolin plays a central role during differentiation and development of retina ganglion cells in goldfish. As shown in earlier work, blockage of the second immunoglobulin domain (Ig2) of neurolin with domain-specific antibodies causes severe pathfinding defects of growing axons in the retina. Thus Ig2 of neurolin was identified as the critical domain for axon guidance. In the present study we have developed a protocol for expression and purification of neurolin-Ig2 suitable for structure analysis, functional studies and ligand identification. Neurolin was expressed in Rosettagami and Origami strains of Escherichia coli which is deficient in glutathione- and thioredoxin reductase facilitating proper formation of the disulfide bond in the cytoplasm. The protein was purified via an N-terminal His(6)-tag by Ni(2+) affinity and size exclusion chromatography. After purification the His(6)-tag was cut-off without loss of solubility. Analytical size exclusion chromatography revealed an apparent molecular mass for neurolin-Ig2 in agreement with a non-covalent homodimer. Analysis of CD and FTIR spectra gave a secondary structure content typical for Ig domains.  相似文献   

5.
Human fibroblast growth factor receptor (FGFR) is responsible for multifunctional signaling that regulates developmental processes. The three immunoglobulin-like extracellular domains of FGFR (D1, D2, and D3) include the determinants of ligand binding and specificity for fibroblast growth factor and heparan sulfate. D1 and the D1-D2 linker with a contiguous stretch of acidic amino acids are known to be involved in auto-inhibitory regulation. In an effort to gain a better understanding of the role of D1 and the linker in FGFR regulation, we have subcloned, overexpressed, and purified the extracellular fragments, D1-D2 and D1-D3, of FGFR1 in Escherichia coli. The recombinant proteins were produced in an insoluble form and were renatured using a dropwise or on-column refolding method. In addition, D2-D3 was coexpressed with chaperones to test the possibility that the presence of chaperones might enhance refolding efficiencies. A combination of immobilized nickel and heparin affinity chromatography and size-exclusion chromatography resulted in the purification of recombinant ectodomain proteins D1-D2 and D1-D3 of high purity for structural studies.  相似文献   

6.
We succeeded in the expression, purification, and refolding of the immunoglobulin-like (Ig) domain of human granulocyte-colony-stimulating factor (G-CSF) receptor with amino-terminal His-tag in Escherichia coli. The refolded Ig domain bound to a G-CSF affinity column and could be eluted with free G-CSF as a receptor-ligand complex, demonstrating that the Ig domain has the information necessary for binding its ligand, G-CSF. The eluted His-Ig/G-CSF complex could be separated from excess G-CSF by Ni-NTA column chromatography. The yield of this active recombinant His-Ig protein is about 0.72 mg per liter of culture. Its small size and the ease of production make this receptor fragment a useful reagent for the structural analysis of its complex with G-CSF.  相似文献   

7.
Daintain/AIF-1 was identified from injured rat carotid arteries and porcine intestine in the mid 1990s. It is involved in autoimmune disorders, chronic rejection of allografts, gliomas, and breast cancer. Since it is convenient and economical to obtain such a peptide biologically, in this study, we describe the expression, purification, and characterization of recombinant human daintain/AIF-1 (rhdaintain/AIF-1). The backbone of vector pET32a, a high-level expression plasmid, was used to construct the pET32a-daintain/AIF-1 plasmid for daintain/AIF-1 expression in Escherichia coli. The recombinant daintain/AIF-1 protein was solubly expressed in the BL21 (DE3) strain and was purified by Ni2+ affinity chromatography. After purification, the recombinant protein showed the expected size of 18 kDa on Tricine-SDS-PAGE gels which was further confirmed by Western blotting. A total of 34.0 mg of high purity (over 98%) rhdaintain/AIF-1 was obtained from 1 L culture. The recombinant peptide was able to increase blood glucose elimination rates and enhance the proliferation of human MCF-7 cells. These results suggest that biological activity of the recombinant peptide was preserved after purification.  相似文献   

8.
Glycine is an essential co-agonist of the excitatory N-methyl-D-aspartate (NMDA) receptor. The glycine binding site of this subtype of ionotropic glutamate receptors is formed by the S1 and S2 regions of the NR1 subunit. Here, different S1S2 fusion proteins were expressed and purified from Escherichia coli cultures, and refolding protocols were established allowing the production of 30 mg of soluble S1S2 fusion protein from 1 liter bacterial culture. After affinity purification and renaturation, two of the fusion proteins (S1S2 and S1S2-V1) bound the competitive glycine site antagonist [3H]MDL105,519 with K(d) values of 9.35 and 3.9 nM, respectively. In contrast, with three other constructs (S1S2M, S1S2-V2, and -V3) saturable ligand binding could not be obtained. These results redefine the S1S2 domains required for high-affinity glycine binding. Furthermore, our high-affinity binding proteins may be used for the large-scale production of the glycine binding core region for future structural studies.  相似文献   

9.
Interleukin-8 (IL-8) is C-X-C chemokine, which is produced by a variety of cells. IL-8 plays an important role in the inflammatory response and may be a therapeutic target for some inflammatory diseases. To develop an IL-8 receptor antagonist, (AAR)IL-8 (IL-8 receptor antagonist) was constructed and successfully expressed in Escherichia coli. (AAR)IL-8 could be easily purified by one-step SP-Sepharose fast flow column after the lysate of recombinant bacterial cells was heated at 70 degrees C for 10 min. The purity of (AAR)IL-8 is more than 95%. This purification process resulted in final purified yields of 4.29 mg (AAR)IL-8/g cell paste. In addition, the purified (AAR)IL-8 can significantly inhibit the chemotaxis that was induced by human IL-8 in vitro and in vivo. These results showed that this purification process is very simple and effective. It could be easily amplified at a larger scale. (AAR)IL-8 might find use as a new therapeutic IL-8 receptor antagonist for some acute and chronic inflammatory diseases.  相似文献   

10.
Tumstatin is a M(r) 28,000 C-terminal NC1 fragment of type alpha3 (IV) collagen that inhibits pathological angiogenesis and suppresses proliferation of endothelial cells and growth of tumors. We report here high cytoplasmic expression of recombinant human tumstatin in Escherichia coli and its purification, in vitro refolding, and inhibitory activity analysis. Human tumstatin was expressed in the bacterial cytoplasm as an insoluble N-terminal polyhistidine tagged protein, which accounted for more than 30% of total bacterial protein in BL21 (DE3) cells. After extraction and solubilization in guanidine-HCl, recombinant protein was purified to homogeneity using a simple one-step Ni(2+)-chelate affinity chromatography and then refolded by dialysis against acidic pH buffers with gradually decreasing concentrations of denaturant. The renatured recombinant tumstatin could specifically inhibit endothelial cell proliferation in a dose-dependent manner, and suppress bFGF-induced angiogenesis in chick embryo chorioallantoic membrane and tumor growth in mouse B16 melanoma xenograft models.  相似文献   

11.
The ephrin receptor A2 (EphA2) is an integral membrane protein tyrosine kinase and a member of the Eph family, the largest known family of receptor tyrosine kinases. EphA2 overexpression is sufficient to transform normal epithelial cells into an aggressive, metastatic phenotype. In normal cells, EphA2 negatively regulates cell growth and invasiveness. Here we report expression of the intact cytoplasmic domain (juxtamembrane linker, tyrosine kinase, and sterile alpha motif domains) of the human EphA2 receptor in an Escherichia coli system. The expressed protein was purified to near homogeneity by use of metal chelation chromatography combined with removal of vector-encoded tags by specific proteolysis. The cytoplasmic domains of EphA2 are expressed as an active kinase, with the expressed protein found to contain phosphorylated tyrosine residues. In addition, protein tyrosine phosphorylation appears only after EphA2 expression is induced and is removable with alkaline phosphatase treatment. The enzyme was purified 5-fold in yields that average 10-30 mg/L of active EphA2 cytoplasmic domains, which will now be used for further biophysical and structural characterization.  相似文献   

12.
The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor that binds a variety of structurally and functionally unrelated ligands, including advanced glycation endproducts (AGEs), amyloid fibrils, amphoterin, and members of the S100 family of proteins. The receptor has been implicated in the pathology of diabetes as well as in inflammatory processes and tumor cell metastasis. For the present study, the extracellular region of RAGE (exRAGE) was expressed as a soluble, C-terminal hexahistidine-tagged fusion protein in the periplasmic space of Escherichia coli. Proper processing and folding of the purified protein, predicted to contain three immunoglobulin-type domains, was supported by the results of electrospray mass spectroscopy and circular dichroism experiments. Sedimentation velocity experiments showed that exRAGE was primarily monomeric in solution. Binding to several RAGE ligands, including AGE-BSA, immunoglobulin light chain amyloid fibrils, and glycosaminoglycans, was demonstrated using pull-down, dot-blot, or enzyme-linked microplate assays. Using surface plasmon resonance, the interaction of exRAGE with AGE-BSA was shown to fit a two-site model, with KD values of 88 nM and 1.4 microM. The E. coli-derived exRAGE did not bind the advanced glycation endproduct Nepsilon-(carboxymethyl)lysine, as reported for the cellular receptor, and the possible role of RAGE glycosylation in recognition of this ligand is discussed. This new RAGE construct will facilitate detailed studies of RAGE-ligand interactions and provides a platform for preparation of site-directed mutants for future structure/function studies.  相似文献   

13.
The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase.  相似文献   

14.
Lethal toxin (LT) that composed by protective antigen and lethal factor (LF) is the major virulence factor of Bacillus anthracis. The treatments of LT in animals could reproduce most manifestations of B. anthracis infections that greatly improves our knowledge in LT-mediated pathogenesis and facilitates anthrax-related researches without having to directly contact the hazardous bacterium B. anthracis. The recombinant protein of LF (rLF), however, still lacks a simple purification method. Herein, we developed single-step nickel affinity purification of rLF with yield up to 3mg/l. By fusion to the leader sequence of outer membrane protein OmpA, rLF could easily be purified from the periplasm of Escherichia coli. To investigate whether the rLT is functional in our system, both wild type rLF and the catalytic mutant rLF that contains a single amino acid substitution at zinc-binding site (LF(E687A)), were subjected to macrophage cytotoxicity analysis. Our data showed that the rLT is fully functional, while the LF(E687A) fail to induce cell death of tested macrophage cells. These findings suggested that the purification protocol herein is a user-friendly method that allows researchers to obtain the functional rLF by single-step purification.  相似文献   

15.
Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion‐exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 108 L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:864–871, 2014  相似文献   

16.
The high-yield production of vascular endothelial growth factor (VEGF), as a major therapeutic target in pathological angiogenesis and diabetic wound healing, provides critical advantages for in vitro studies. In the present study, to improve the soluble production of human VEGF8–109 (receptor-binding domain (RBD) of VEGF or VEGF RBD), at first VEGF 8-109 encoded gene was expressed in SHuffle T7 E. coli. Moreover, in two steps, the protein production was optimized based on Taguchi design, by evaluating optimal levels of various induction parameters, such as cell density in induction time, temperature, inducer concentration, and media components. The results indicated that the highest amount of the protein was achieved in TB medium containing glycerol 6 g L−1, peptone to yeast extract ratio 1:1, ethanol 3% and MgSO4 4 g L−1, under inducing with 0.05 mM IPTG in OD600 of 0.7 at 24 °C for 22 h. The bioactivity of the purified protein was confirmed by cell proliferation assay. Finally, bench-scale production of VEGF8–109 was performed under the optimum conditions and resulted in 182 mg of soluble VEGF8–109 expressed per liter. Totally, our results can be considered as a basis for economical production of the recombinant VEGF in future.  相似文献   

17.
Tryptophan hydroxylase (TPH) from several mammalian species has previously been cloned and expressed in bacteria. However, due to the instability of wild type TPH, most successful attempts have been limited to the truncated forms of this enzyme. We have expressed full-length human TPH in large amounts in Escherichia coli and Pichia pastoris and purified the enzyme using new purification protocols. When expressed as a fusion protein in E. coli, the maltose-binding protein-TPH (MBP-TPH) fusion protein was more soluble than native TPH and the other fusion proteins and had a 3-fold higher specific activity than the His-Patch-thioredoxin-TPH and 6xHis-TPH fusion proteins. The purified MBP-TPH had a V(max) of 296 nmol/min/mg and a K(m) for L-tryptophan of 7.5+/-0.7 microM, compared to 18+/-5 microM for the partially purified enzyme from P. pastoris. To overcome the unfavorable properties of TPH, the stabilizing effect of different agents was investigated. Both tryptophan and glycerol had a stabilizing effect, whereas dithiothreitol, (6R)-5,6,7,8,-tetrahydrobiopterin, and Fe(2+) inactivated the enzyme. Irrespective of expression conditions, both native TPH expressed in bacteria or yeast, or TPH fusion proteins expressed in bacteria exhibited a strong tendency to aggregate and precipitate during purification, indicating that this is an intrinsic property of this enzyme. This supports previous observations that the enzyme in vivo may be stabilized by additional interactions.  相似文献   

18.
N-Methylpurine-DNA glycosylase (MPG), a ubiquitous DNA repair enzyme, initiates excision repair of several N-alkylpurine adducts, deaminated and lipid peroxidation-induced purine adducts. MPG from human and mouse has previously been cloned and expressed. However, due to the poor expression level in Escherichia coli (E. coli) and multi-step purification process of full-length MPG, most successful attempts have been limited by extremely poor yield and stability. Here, we have optimized the codons within the first five residues of human MPG (hMPG) to the best used codons for E. coli and expressed full-length hMPG in large amounts. This high expression level in conjunction with a strikingly high isoelectric point (9.65) of hMPG, in fact, helped purify the enzyme in a single step. A previously well-characterized monoclonal antibody having an epitope in the N-terminal tail could detect this codon-optimized hMPG protein. Surface plasmon resonance studies showed an equilibrium binding constant (KD) of 0.25 nM. Steady-state enzyme kinetics showed an apparent Km of 5.3 nM and kcat of 0.2 min−1 of MPG for the hypoxanthine (Hx) cleavage reaction. Moreover, hMPG had an optimal activity at pH 7.5 and 100 mM KCl. Unlike the previous reports by others, this newly purified full-length hMPG is appreciably stable at high temperature, such as 50 °C. Thus, this study indicates that this improved expression and purification system will facilitate large scale production and purification of a stable human MPG protein for further biochemical, biophysical and structure–function analysis.  相似文献   

19.
There are many growth factors secreted by placenta including growth hormone, placenta lactogen (PL), prolactin, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and chorionic gonadotropin. For a systematic study of how these growth factors work together to result in the various biological functions and future clinical applications, it is needed to produce enough quantities of each protein. In this paper, we report the cloning of human PL (hPL) and expression by Escherichia coli (E. coli). Four kinds of expression vectors containing the hPL gene were transformed into several kinds of suitable host strains and grown at 37 and/or 30 degrees C. Determination of the yield of recombinant hPL by SDS-PAGE reveals that among the various conditions, pQE30-PL in E. coli strain M15[pREP4] expressed the largest amount of recombinant hPL at 37 degrees C. However, the expressed recombinant hPL was accumulated in inclusion body forms. The inclusion bodies were solubilized in 8M urea and purified by a His6 tagged affinity column under denaturing condition and the final yield of hPL was determined to be 48 mg/L. Intra-chain disulfide bonds could be formed either by oxidation in the refolding buffer or by air oxidation in the presence of urea. The biological activity was examined by the fact that hPL could stimulate erythroid maturation by the formation of hemoglobin in K-562 cells in the presence of erythropoietin. Initial optimization studies resulted in the production of 282.4 mg/L of hPL.  相似文献   

20.
The two-kringle domain of tissue-type plasminogen activator (TK1-2) has been identified as a potent angiogenesis inhibitor by suppressing endothelial cell proliferation, in vivo angiogenesis, and in vivo tumor growth. Escherichia coli-derived, non-glycosylated TK1-2 more potently inhibits in vivo tumor growth, whereas Pichia expression system is more efficient for producing TK1-2 as a soluble form, albeit accompanying N-glycosylation. Therefore, in order to avoid immune reactivity and improve in vivo efficacy, we expressed the non-glycosylated form of TK1-2 in Pichia pastoris and evaluated its activity in vitro. When TK1-2 was mutated at either Asn(117) or Asn(184) by replacing with Gln, the mutated proteins produced the glycosylated form in Pichia, of which sugar moiety could be deleted by endoglycosidase H treatment. When both sites were replaced by Gln, the resulting mutant produced a non-glycosylated protein, NQ-TK1-2. Secreted NQ-TK1-2 was purified from the culture broth by sequential ion exchange chromatography using SP-sepharose, Q-spin, and UNO-S1 column. The purified NQ-TK1-2 migrated as a single protein band of approximately 20 kDa in SDS-PAGE and its mass spectrum showed one major peak of 19,950.71 Da, which is smaller than those of two glycosylated forms of wild type TK1-2. Functionally, the purified NQ-TK1-2 inhibited endothelial cell proliferation and migration stimulated by bFGF and VEGF, respectively. Therefore, the results suggest that non-glycosylated TK1-2 useful for the treatment of cancer can be efficiently produced in Pichia, with retaining its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号