首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment of leukocytes to inflammatory sites is crucial in the pathogenesis of chronic inflammatory diseases. The aim of this study was to investigate if activation of CB2 cannabinoid receptors would modulate the chemotactic response of human monocytes. Human monocytes treated with the CB2 agonist JWH-015 for 12-18 h showed significantly reduced migration to chemokines CCL2 and CCL3, associated with reduced mRNA and surface expression of their receptors CCR2 and CCR1. The induction of ICAM-1 in response to IFN-gamma was inhibited by JWH-015. Moreover, JWH-015 cross-desensitized human monocytes for migration in response to CCL2 and CCL3 by its own chemoattractant properties. The CB2-selective antagonist SR-144528, but not the CB1 antagonist SR-147778, reversed JWH-015-induced actions, whereas the CB2 agonist JWH-133 mimicked the effects of JWH-015. The investigation of underlying pathways revealed the involvement of phosphatidylinositol 3-kinase/Akt and ERK1/2 but not p38 MAPK. In conclusion, selective activation of CB2 receptors modulates chemotaxis of human monocytes, which might have crucial effects in chronic inflammatory disorders such as atherosclerosis or rheumatoid arthritis.  相似文献   

2.
3.
Kim IS  Jang SW  Sung HJ  Lee JS  Ko J 《FEBS letters》2005,579(27):6044-6048
Human CC chemokine-4 (HCC-4)/CCL16 is a chemoattractant for monocytes and lymphocytes. Although HCC-4 binds to multiple CC chemokine receptors, the receptor-mediated signal transduction pathway induced by HCC-4 has not been characterized. Human osteogenic sarcoma cells stably expressing CCR1 were used to investigate HCC-4-mediated chemotaxis signaling events via CCR1. The chemotactic activity of HCC-4 as well as those of other CCR1-dependent chemokines including MIP-1alpha/CCL3, RANTES/CCL5, and Lkn-1/CCL15 was inhibited by the treatment of pertussis toxin, an inhibitor of Gi/Go protein, U73122, an inhibitor of phospholipase C (PLC), and rottlerin, a specific inhibitor of protein kinase Cdelta (PKCdelta). These results indicate that HCC-4-induced chemotaxis signaling is mediated through Gi/Go protein, PLC, and PKCdelta. SB202190, an inhibitor of p38 mitogen activated protein kinase, only blocked the chemotactic activity of HCC-4, but not those of other CCR1-dependent chemokines. SB202190 inhibited HCC-4-induced chemotaxis in a dose-dependent manner (P < 0.01). HCC-4 induces p38 activation in both a time and dose-dependent manner. However, such p38 activation was not induced by other CCR1-dependent chemokines. To further investigate the differential effect of HCC-4, the Ca2+ mobilization was examined. HCC-4 induced no intracellular Ca2+ flux in contrast to other CCR1-dependent chemokines. These results indicate that HCC-4 transduces signals differently from other CCR1-dependent chemokines and may play different roles in the immune response.  相似文献   

4.
Monocyte chemoattractant protein-1 (MCP-1) is important in attracting monocytes to sites of inflammation. Besides induction of monocyte recruitment, MCP-1 can also affect chemotactic response of endothelial cells. The molecular mechanisms involved in MCP-1-induced cell migration are poorly understood. In the current investigation, we demonstrate activation of p42/44(ERK1/2) and p38 mitogen-activated protein kinases (MAPKs), phosphatydilinositol-3-kinase (PI3K) and Src-kinases in both monocytes and endothelial cells stimulated with MCP-1 in vitro. The response was rapid and time-dependent, detectable within 3 min of MCP-1 stimulation. MCP-1-induced phosphorylation of p42/44(ERK1/2) MAPKs was partially blocked by inhibitor of PI3K LY294002, while phosphorylation of p38 MAPK was diminished to a greater extent in presence of Src-kinase inhibitor PP2. There was a substantial inhibition of monocyte migration upon treatment with inhibitors of p38 MAPK, at the same time inhibition of p42/44(ERK1/2) MAPK activation had no effect. On the contrary, the MCP-1-stimulated chemotaxis of endothelial cells was completely abolished by inhibitors of PI3K and p42/44(ERK1/2), but not by p38 MAPK inhibitors. These results suggest that parallel signal transduction pathways are activated by MCP-1, and that depending on the cell type these pathways differentially contribute to cell chemotactic activity.  相似文献   

5.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

6.
Cyclic ADP ribose (cADPR) is a calcium-mobilizing metabolite that regulates intracellular calcium release and extracellular calcium influx. Although the role of cADPR in modulating calcium mobilization has been extensively examined, its potential role in regulating immunologic responses is less well understood. We previously reported that cADPR, produced by the ADP-ribosyl cyclase, CD38, controls calcium influx and chemotaxis of murine neutrophils responding to fMLF, a peptide agonist for two chemoattractant receptor subtypes, formyl peptide receptor and formyl peptide receptor-like 1. In this study, we examine whether cADPR is required for chemotaxis of human monocytes and neutrophils to a diverse array of chemoattractants. We found that a cADPR antagonist and a CD38 substrate analogue inhibited the chemotaxis of human phagocytic cells to a number of formyl peptide receptor-like 1-specific ligands but had no effect on the chemotactic response of these cells to ligands selective for formyl peptide receptor. In addition, we show that the cADPR antagonist blocks the chemotaxis of human monocytes to CXCR4, CCR1, and CCR5 ligands. In all cases, we found that cADPR modulates intracellular free calcium levels in cells activated by chemokines that induce extracellular calcium influx in the apparent absence of significant intracellular calcium release. Thus, cADPR regulates calcium signaling of a discrete subset of chemoattractant receptors expressed by human leukocytes. Since many of the chemoattractant receptors regulated by cADPR bind to ligands that are associated with clinical pathology, cADPR and CD38 represent novel drug targets with potential application in chronic inflammatory and neurodegenerative disease.  相似文献   

7.
Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via beta1 (VLA-4) and beta2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Ras-proximal signaling, by which Rap1 might mediate transformation reversion.  相似文献   

8.
Transmigration of monocytes to the subendothelial space is the initial step of atherosclerotic plaque formation and inflammation. Integrin activation and chemotaxis are two important functions involved in monocyte transmigration. To delineate the signaling cascades leading to integrin activation and chemotaxis by monocyte chemoattractant protein-1 (MCP-1), we have investigated the roles of MAPK and Rho GTPases in THP-1 cells, a monocytic cell line. MCP-1 stimulated beta1 integrin-dependent, but not beta2 integrin-dependent cell adhesion in a time-dependent manner. MCP-1-mediated cell adhesion was inhibited by a MEK inhibitor but not by a p38-MAPK inhibitor. In contrast, MCP-1-mediated chemotaxis was inhibited by the p38-MAPK inhibitor but not by the MEK inhibitor. The inhibitor of Rho GTPase, C3 exoenzyme, and a Rho kinase inhibitor abrogated MCP-1-dependent chemotaxis but not integrin-dependent cell adhesion. Further, C3 exoenzyme and the Rho kinase inhibitor blocked MCP-1-dependent p38-MAPK activation. These data indicate that ERK is responsible for integrin activation, that p38-MAPK and Rho are responsible for chemotaxis mediated by MCP-1, and that Rho and the Rho kinase are upstream of p38-MAPK in MCP-1-mediated signaling. This study demonstrates that two distinct MAPKs regulate two dependent signaling cascades leading to integrin activation and chemotaxis induced by MCP-1 in THP-1 cells.  相似文献   

9.
Recent evidence has emphasized the importance of p38 mitogen-activated protein kinase (MAPK) in the induction of metabotropic glutamate receptor (mGluR)-dependent long term depression (LTD) at hippocampal CA3-CA1 synapses. However, the cascade responsible of mGluR to activate p38 MAPK and the signaling pathway immediately downstream from it to induce synaptic depression is poorly understood. Here, we show that transient activation of group I mGluR with the selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) activates p38 MAPK through G protein betagamma-subunit, small GTPase Rap1, and MAPK kinase 3/6 (MKK3/6), thus resulting in mGluR5-dependent LTD. Furthermore, our data clearly show that an accelerating AMPA receptor endocytosis by stimulating the formation of guanyl nucleotide dissociation inhibitor-Rab5 complex is a potential downstream processing of p38 MAPK activation to mediate DHPG-LTD. These results suggest an important role for Rap1-MKK3/6-p38 MAPK pathway in the induction of mGluR-dependent LTD by directly coupling to receptor trafficking machineries to facilitate the loss of synaptic AMPA receptors.  相似文献   

10.
CCR7 is necessary to direct dendritic cells (DCs) to secondary lymphoid nodes and to elicit an adaptative immune response. Despite its importance, little is known about the molecular mechanisms used by CCR7 to direct DCs to lymph nodes. In addition to chemotaxis, CCR7 regulates the migratory speed of DCs. We investigated the intracellular pathways that regulate CCR7-dependent chemotaxis and migratory speed. We found that CCR7 induced a G(i)-dependent activation of MAPK members ERK1/2, JNK, and p38, with ERK1/2 and p38 controlling JNK. MAPK members regulated chemotaxis, but not the migratory speed, of DCs. CCR7 induced activation of PI3K/Akt; however, these enzymes did not regulate either chemotaxis or the speed of DCs. CCR7 also induced activation of the GTPase Rho, the tyrosine kinase Pyk2, and inactivation of cofilin. Pyk2 activation was independent of G(i) and Src and was dependent on Rho. Interference with Rho or Pyk2 inhibited cofilin inactivation and the migratory speed of DCs, but did not affect chemotaxis. Interference with Rho/Pyk2/cofilin inhibited DC migratory speed even in the absence of chemokines, suggesting that this module controls the speed of DCs and that CCR7, by activating its components, induces an increase in migratory speed. Therefore, CCR7 activates two independent signaling modules, one involving G(i) and a hierarchy of MAPK family members and another involving Rho/Pyk2/cofilin, which control, respectively, chemotaxis and the migratory speed of DCs. The use of independent signaling modules to control chemotaxis and speed can contribute to regulate the chemotactic effects of CCR7.  相似文献   

11.
As it has not yet been established whether the second messengers involved in the neutrophil response have identical or specific signalling requirements for each physiological function, protein kinase C (PKC) isoforms and mitogen activated protein kinases (MAPKs) were studied in human chemotaxis triggered by the full agonist for-Met-Leu-Phe-OMe (fMLP-OMe) and the 'pure' chemoattractant for-Thp-Leu-Ain-OMe [Thp1,Ain3] analogue. Experiments were performed in the presence or absence of extracellular Ca2+, known to be an important modulator of second messengers. Our data demonstrate that specific PKC beta1 translocation and p38 MAPK phosphorylation are strongly associated with the chemotactic response of the neutrophils triggered by both peptides, while Ca2+ is not necessary for chemotaxis to occur. PKC and MAPK inhibitors were used in Western blotting assays and in cell locomotion experiments to investigate if the MAPK signalling pathway was controlled by PKC activation. The most important finding emerging from this study is that PKC and MAPK activate the chemotactic function of human neutrophils by two independent pathways.  相似文献   

12.
8-Cl-cAMP, which is known to induce differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. Previously, we reported that 8-Cl-cAMP and its metabolite 8-Cl-adenosine induce growth inhibition and apoptosis through p38 mitogen-activated protein kinase (MAPK) activation. To further investigate the signal mechanisms that regulate the cellular effects of 8-Cl-cAMP, we focused on a small GTPase Rap1 that is known to be involved in growth inhibition and reverse-transformation. 8-Cl-cAMP and 8-Cl-adenosine could increase Rap1 activity, which was blocked by ABT702-an adenosine kinase inhibitor. This suggests that 8-Cl-cAMP-induced Rap1 activation is also dependent on the metabolic degradation of 8-Cl-cAMP. Overexpression of a constitutively active mutant form of Rap1 (Rap1V12) attenuated cellular growth and soft-agar colony formation, which was basically the same effect as that observed with the 8-Cl-cAMP treatment. Furthermore, the Rap1V12 transfectant showed a high level of p38 MAPK activation. However, 8-Cl-cAMP-induced Rap1 activation was not diminished by SB203580, a p38 MAPK inhibitor, suggesting that Rap1 activation might act upstream of p38 MAPK activation during 8-Cl-cAMP-induced growth inhibition.  相似文献   

13.
To study the immune responses of porcine intestinal epithelial cells to gram-negative bacteria via toll-like receptors (TLRs), originally established porcine intestinal epitheliocyte (PIE) cells were treated with lipopolysaccharide (LPS) or swine-specific enterotoxigenic Escherichia coli (ETEC). Real-time quantitative PCR revealed that PIE cells expressed TLR1-9 and MD-2 mRNAs, preferentially expressed TLR4/MD-2. Immunostaining of PIE cells revealed that TLR4 was precisely expressed in PIE cells at the protein level. PIE cells treated with LPS had up-regulated expression of several TLRs (TLR2, 3, 4, 5 and 8), type 1 helper T (Th1) cytokines (interleukin (IL)-1alpha, IL-1beta, IL-6, IL-15, 18, leukemia inhibitory factor (LIF), and interferon (IFN)-beta), and chemokines (monocyte chemoattractant protein (MCP)-1 and IL-8). ETEC enhanced the expression of TLR2, Th1 type cytokines (IL-1alpha, IL-12p35 and IL-6) and chemokines (MCP-1 and IL-8). These results indicate that PIE induces inflammatory responses by up-regulating Th1 cytokines and chemokines in response to LPS or ETEC, suggesting that PIE is a useful cell line for studying inflammatory responses via TLR4/MD-2 in intestinal epithelial cells.  相似文献   

14.
The p38 mitogen-activated protein kinase (MAPK) signaling pathway regulates a wide range of inflammatory responses in many different cells. Inhibition of p38 MAPK before exposing a cell to stress stimuli has profound anti-inflammatory effects, but little is known about the effects of p38 MAPK inhibition on ongoing inflammatory responses. LPS-induced activation of p38 MAPK in human neutrophils was inhibited by poststimulation exposure to a p38 MAPK inhibitor (M39). Release of TNF-alpha, macrophage-inflammatory protein (MIP)-2 (MIP-1beta), and IL-8 by LPS-stimulated neutrophils was also reduced by poststimulation p38 MAPK inhibition. In contrast, release of monocyte chemoattractant protein-1 was found to be p38 MAPK independent. Ongoing chemotaxis toward IL-8 was eliminated by p38 MAPK inhibition, although the rate of nondirectional movement was not reduced. A murine model of acute LPS-induced lung inflammation was used to study the effect of p38 MAPK inhibition in ongoing pulmonary inflammation. Initial pulmonary cell responses occur within 4 h of stimulation in this model, so M39 was administered 4 h or 12 h after exposure of the animals to aerosolized LPS to avoid inhibition of cytokine release. Quantities of TNF-alpha, MIP-2, KC, or monocyte chemoattractant protein-1 recovered from bronchial alveolar lavage or serum were not changed. Recruitment of neutrophils, but not other leukocytes, to the airspaces was significantly reduced. Together, these data demonstrate the selective reduction of LPS-induced neutrophil recruitment to the airspaces, independent of suppression of other inflammatory responses. These findings support the feasibility of p38 MAPK inhibition as a selective intervention to reduce neutrophilic inflammation.  相似文献   

15.
16.
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.  相似文献   

17.
18.
19.
Several chemoattractant receptors can support agonist-induced, integrin- dependent arrest of rolling neutrophils in inflamed venules in vivo, as well as subsequent crawling into tissues. It has been hypothesized that receptors of the Galpha(i)-linked chemoattractant subfamilies, especially receptors for chemokines, may mediate parallel activation- dependent arrest of homing lymphocyte subsets. However, although several chemokines can attract subsets of B or T cells, robust chemoattractant triggering of resting lymphocyte adhesion to vascular ligands has not been observed. To study the biology of individual leukocyte chemoattractant receptors in a defined lymphoid environment, mouse L1/2 pre-B cells and/or human Jurkat T cells were transfected with alpha (IL-8 receptor A) or beta (MIP-1alpha/CC-CKR-1) chemokine receptors, or with the classical chemoattractant C5a (C5aR) or formyl peptide receptors (fPR). All receptors supported robust agonist- dependent alpha4beta1 integrin-mediated adhesion of lymphocytes to VCAM- 1. L1/2 cells cotransfected with fPR and beta7 integrin were also induced to bind MAdCAM-1, suggesting common mechanisms coupling chemoattractant receptors to activation of distinct integrins. Adhesion was rapid but transient, with spontaneous reversion to unstimulated levels within 5 min after peak binding. When observed under flow conditions, alpha4beta1-mediated arrest occurred within seconds after initiation of contact and rolling of IL-8RA transfectants on VCAM-1/IL- 8 co-coated surface; and arrest reversed spontaneously after a mean of 5 min with a return to rolling behavior. Each of the receptors also conferred agonist-specific chemotaxis; however, whereas strong adhesion required simultaneous occupancy of many receptors with maximal responses above the Kd, chemotaxis in each case was suppressed at high agonist concentrations. The findings indicate that alpha and beta chemokine as well as classical chemoattractant receptors can trigger robust adhesion as well as directed migration of lymphoid cells, but that the requirements for and kinetics of adhesion triggering and chemotaxis are distinct, thus permitting their independent regulation. They suggest that the discordance between proadhesive and chemoattractant responses of circulating lymphocytes to many chemokines may reflect quantitative aspects of receptor expression and/or coupling rather than qualitative differences in receptor signaling.  相似文献   

20.
Toll‐like receptors 2 (TLR2) and 4 (TLR4) are present in the plasma membrane of skeletal muscle cells where their functions remain incompletely resolved. They can bind various extracellular ligands, such as FSL‐1, lipopolysaccharide (LPS) and/or palmitic acid (PA). We have investigated the link between PA, TLR2/4 and ribosomal S6 kinase 1 (S6K1) in C2C12 myotubes. Incubation with agonists of either TLR2 or TLR4, and with a high concentration of PA, increased S6K1 phosphorylation. Canonical upstream kinases of S6K1, protein kinase B (PKB) and mammalian target of rapamycin complex 1 (mTORC1), were regulated in the opposite way by PA, indicating that these kinases were probably not involved. By using the SB202190 inhibitor, p38 MAPK (mitogen‐activated protein kinase) was found to be a key mediator of PA‐induced phosphorylation of S6K1. Downregulation of either tlr2 or tlr4 gene expression by small interfering RNAs prevented the activation of both p38 MAPK and S6K1 by FSL‐1, LPS or PA. Thus TLR2 and TLR4 agonists can increase the level of S6K1 phosphorylation in a p38 MAPK‐dependent way in C2C12 myotubes. As PA induced the same intracellular signalling, a novel atypical pathway for PA is induced at the cellular membrane level and results in a higher phosphorylation state of S6K1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号