首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new short retroposon families (SINEs) have been found in the genome of springhare Pedetes capensis (Rodentia). One of them, Ped-1, originated from 5S rRNA, while the other one, Ped-2, originated from tRNA-derived SINE ID. In contrast to most currently active mammalian SINEs mobilized by L1 long retrotransposon (LINE), Ped-1 and Ped-2 are mobilized by Bov-B, a LINE family of the widely distributed RTE clade. The 3' part of these SINEs originates from two sequences in the 5' and 3' regions of Bov-B. Such bipartite structure of the LINE-derived part has been revealed in all Bov-B-mobilized SINEs known to date (AfroSINE, Bov-tA, Mar-1, and Ped-1/2), which distinguishes them from other SINEs with only a 3' LINE-derived part. Structural analysis and the distribution of Bov-B LINEs and partner SINEs supports the horizontal transfer of Bov-B, while the SINEs emerged independently in lineages with this LINE.  相似文献   

2.
Eukaryotic genomes are colonized by different retroposons, including short interspersed repetitive elements (SINEs). All currently known SINEs are derived from tRNA and 7SL RNA genes and exploit their type 2 internal pol III promoters. We report here a novel class of SINE elements, called SINE3, derived from 5S rRNA. SINE3s are transcribed from the type 1 internal pol III promoter. Approximately 10,000 copies of SINE3 elements are present in the zebrafish genome, they constitute approximately 0.4% of the genomic DNA. Some elements are as little as 1% diverged from each other, indicating that the retrotransposition of SINE3 in zebrafish is an ongoing process. The 3'-tail of SINE3 is significantly similar to that of CR1-like non-LTR retrotransposons, represented by numerous subfamilies in the zebrafish genome. Analogously to CR1-like elements, SINE3 copies are not flanked by target site duplications, and their 3' termini are composed of (ACATT)n and (ATT)n microsatellites, specific for different subfamilies of SINE3. Given the common structural features, it is highly likely that the enzymatic machinery encoded by CR1-like elements powers proliferation of SINE3.  相似文献   

3.
Short interspersed nuclear elements (SINEs) are non-long terminal repeat retrotransposons that are highly abundant, heterogeneous, and mostly not annotated in eukaryotic genomes. We developed a tool designated SINE-Finder for the targeted discovery of tRNA-derived SINEs. We analyzed sequence data of 16 plant genomes, including 13 angiosperms and three gymnosperms and identified 17,829 full-length and truncated SINEs falling into 31 families showing the widespread occurrence of SINEs in higher plants. The investigation focused on potato (Solanum tuberosum), resulting in the detection of seven different SolS SINE families consisting of 1489 full-length and 870 5' truncated copies. Consensus sequences of full-length members range in size from 106 to 244 bp depending on the SINE family. SolS SINEs populated related species and evolved separately, which led to some distinct subfamilies. Solanaceae SINEs are dispersed along chromosomes and distributed without clustering but with preferred integration into short A-rich motifs. They emerged more than 23 million years ago and were species specifically amplified during the radiation of potato, tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum). We show that tobacco TS retrotransposons are composite SINEs consisting of the 3' end of a long interspersed nuclear element integrated downstream of a nonhomologous SINE family followed by successfully colonization of the genome. We propose an evolutionary scenario for the formation of TS as a spontaneous event, which could be typical for the emergence of SINE families.  相似文献   

4.
Some previously unidentified short interspersed repetitive elements (SINEs) and long interspersed repetitive element (LINEs) were isolated from various higher elasmobranchs (sharks, skates, and rays) and characterized. These SINEs, members of the HE1 SINE family, were tRNA-derived and were widespread in higher elasmobranches. The 3'-tail region of this SINE family was strongly conserved among elasmobranchs. The LINEs, members of the HER1 LINE family, encoded an amino acid sequence similar to that encoded by the chicken CR1 LINE family, and they contained a strongly conserved 3'-tail region in the 3' untranslated region. This tail region of the HER1 LINE family was almost identical to that of the HE1 SINE family. Thus, the HE1 SINE family and the HER1 LINE family provide a clear example of a pair of SINEs and LINEs that share the same tail region. Conservation of the secondary structures of the tail regions, as well as of the nucleotide sequences, between the HE1 SINE family and HER1 LINE family during evolution suggests that SINEs utilize the enzymatic machinery for retroposition of LINEs through the recognition of higher-order structures of the conserved 3'-tail region. A discussion is presented of the parasitism of SINEs on LINEs during the evolution of these retroposons.  相似文献   

5.
Several novel (sub)families of SINEs were isolated from the genomes of cetaceans and artiodactyls, and their sequences were determined. From comparisons of diagnostic nucleotides among the short interspersed repetitive elements (SINEs) in these (sub)families, we were able to draw the following conclusions. (1) After the divergence of the suborder Tylopoda (camels), the CHRS family of SINEs was newly created from tRNA(Glu) in a common ancestor of the lineages of the Suina (pigs and peccaries), Ruminantia (cows and deer), and Cetacea (whales and dolphins). (2) After divergence of the Suina lineage, the CHR-1 SINE and the CHR-2 SINE were generated successively in a common ancestor of ruminants, hippopotamuses, and cetaceans. (3) In the Ruminantia lineage, the Bov-tA SINE was generated by recombination between the CHR-2 SINE and Bov-A. (4) In the Suina lineage, the CHRS-S SINE was generated from the CHRS SINE. (5) In this latter lineage, the PRE-1 family of SINEs was created by insertion of part of the gene for tRNA(Arg) into the 5' region of the CHRS-S family. The distribution of a particular family of SINEs among species of artiodactyls and cetaceans confirmed the most recent conclusion for paraphyly of the order Artiodactyla. The present study also revealed that a newly created tRNA(Glu)-derived family of SINEs was subjected both to recombination with different units and to duplication of an internal sequence within a SINE unit to generate, during evolution, a huge superfamily of tRNA(Glu)-related families of SINEs that are now found in the genomes of artiodactyls and cetaceans.  相似文献   

6.
7.
We have characterized the two families of SINE retroposons present in Arabidopsis thaliana. The origin, distribution, organization, and evolutionary history of RAthE1 and RAthE2 elements were studied and compared to the well-characterized SINE S1 element from Brassica. Our studies show that RAthE1, RAthE2, and S1 retroposons were generated independently from three different tRNAs. The RAthE1 and RAthE2 families are older than the S1 family and are present in all tested Cruciferae species. The evolutionary history of the RAthE1 family is unusual for SINEs. The 144 RAthE1 elements of the Arabidopsis genome cannot be classified in distinct subfamilies of different evolutionary ages as is the case for S1, RAthE2, and mammalian SINEs. Instead, most RAthE1 elements were probably derived steadily from a single source gene that was maintained intact and active for at least 12-20 Myr, a result suggesting that the RAthE1 source gene was under selection. The distribution of RAthE1 and RAthE2 elements on the Arabidopsis physical map was studied. We observed that, in contrast to other Arabidopsis transposable elements, SINEs are not concentrated in the heterochromatic regions. Instead, SINEs are grouped in the euchromatic chromosome territories several hundred kilobase pairs long. In these territories, SINE elements are closely associated with genes. A retroposition partnership between Arabidopsis SINEs and LINEs is proposed.  相似文献   

8.
9.
The current model of short interspersed nuclear element (SINE) mobility suggests that these non-coding retroposons are able to recruit for their own benefits the enzymatic machinery encoded by autonomous long interspersed nuclear elements (LINEs). The recent characterization of potential SINE-LINE partner pairs that share common 3' end sequences concurs with this model and has led to a potent picture of tRNA-derived SINEs consisting of a tripartite functional structure (Mol. Cell. Biol. 16 (1996) 3756; Mol. Biol. Evol. 16 (1999) 1238; Proc. Natl. Acad. Sci. USA 96 (1999) 2869). This structure consist of a 5' polIII tRNA-related promoter region, a central conserved domain and a variable 3' region with homology to the 3' end of LINEs, believed to be essential to direct recognition by the LINE proteins. To test this model in vivo, we have designed synthetic SINEs possessing this 'canonical' structure, including 3' homology to the 3' UTR of the LINE I factor from Drosophila. These synthetic elements were introduced in a Drosophila reactive strain, and SINE retroposition was assessed following dysgenic crosses that are known to induce high levels of I factor germinal transposition. In the progeny from the dysgenic crosses 3400-4000 flies were analyzed but no retroposed copy of the chimeric SINEs was detected, indicating that what is assumed to be a typical SINE structure is not sufficient per se to allow efficient trans-mobilization of our synthetic SINEs by an actively amplifying partner LINE. Alternatively, the apparent absence of natural fly SINEs may underline intrinsic properties of fly biology that are incompatible with the genesis and/or propagation of SINE-like elements.  相似文献   

10.
11.
A repetitive element of approximately 200 bp was cloned from harbour seal (Phoca vitulina concolour) genomic DNA. The sequence of the element revealed putative RNA polymerase III control boxes, a poly A tail and direct terminal repeats characteristic of SINEs. Sequence and secondary structural similarities suggest that the SINE is derived from a tRNA, possibly tRNA-alanine. Southern blot analysis indicated that the element is predominately dispersed in unique regions of the seal genome, but may also be present in other repetitive sequences, such as tandemly arrayed satellite DNA. Based on slot-blot hybridization analysis, we estimate that 1.3 x 10(6) copies of the SINE are present in the harbour seal genome; SINE copy number based on the number of clones isolated from a size-selected library, however, is an order of magnitude lower (1-3 x 10(5) copies), an estimate consistent with the abundance of SINEs in other mammalian genomes. Database searches found similar sequences have been isolated from dog (Canis familiaris) and mink (Mustela vison). These, and the seal SINE sequences are characterized by an internal CT dinucleotide microsatellite in the tRNA-unrelated region. Hybridization of genomic DNA from representative species of a wide range of mammalian orders to an oligonucleotide (30mer) probe complementary to a conserved region of the SINE confirmed that the element is unique to carnivores of the superfamily Canoidea.  相似文献   

12.
13.
The PstI family of elements are short, highly repetitive DNA sequences interspersed throughout the genome of the Bovidae. We have cloned and sequenced some members of the PstI family from cattle, goat, and buffalo. These elements are approximately 500 bp, have a copy number of 2 x 10(5) - 4 x 10(5), and comprise about 4% of the haploid genome. Studies of nucleotide sequence homology indicate that the buffalo and goat PstI repeats (type II) are similar types of short interspersed nucleotide element (SINE) sequences, but the cattle PstI repeat (type I) is considerably more divergent. Additionally, the goat PstI sequence showed significant sequence homology with bovine serine tRNA, and is therefore likely derived from serine tRNA. Interestingly, Southern hybridization suggests that both types of SINEs (I and II) are present in all the species of Bovidae. Dendrogram analysis indicates that cattle PstI SINE is similar to bovine Alu-like SINEs. Goat and buffalo SINEs formed a separate cluster, suggesting that these two types of SINEs evolved separately in the genome of the Bovidae.  相似文献   

14.
Gadzalski M  Sakowicz T 《Gene》2011,480(1-2):21-27
Although short interspersed elements (SINEs) were discovered nearly 30 years ago, the studies of these genomic repeats were mostly limited to animal genomes. Very little is known about SINEs in legumes--one of the most important plant families. Here we report identification, genomic distribution and molecular features of six novel SINE elements in Lotus japonicus (named LJ_SINE-1, -2, -3) and Medicago truncatula (MT_SINE-1, -2, -3), model species of legume. They possess all the structural features commonly found in short interspersed elements including RNA polymerase III promoter, polyA tail and flanking repeats. SINEs described here are present in low to moderate copy numbers from 150 to 3000. Bioinformatic analyses were used to searched public databases, we have shown that three of new SINE elements from M. truncatula seem to be characteristic of Medicago and Trifolium genera. Two SINE families have been found in L. japonicus and one is present in both M. truncatula and L. japonicus. In addition, we are discussing potential activities of the described elements.  相似文献   

15.
Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.  相似文献   

16.
17.
Isolation and characterization of active LINE and SINEs from the eel   总被引:4,自引:0,他引:4  
Long interspersed elements (LINEs) and short interspersed elements (SINEs) are retrotransposons. These elements can mobilize by the "copy-and-paste" mechanism, in which their own RNA is reverse-transcribed into complementary DNA (cDNA). LINEs and SINEs not only are components of eukaryotic genomes but also drivers of genomic evolution. Thus, studies of the amplification mechanism of LINEs and SINEs are important for understanding eukaryotic genome evolution. Here we report the characterization of one LINE family (UnaL2) and two SINE families (UnaSINE1 and UnaSINE2) from the eel (Anguilla japonica) genome. UnaL2 is approximately 3.6 kilobases (kb) and encodes only one open reading frame (ORF). UnaL2 belongs to the stringent type--thought to be a major group of LINEs--and can mobilize in HeLa cells. We also show that UnaL2 and the two UnaSINEs have similar 3' tails, and that both UnaSINE1 and UnaSINE2 can be mobilized by UnaL2 in HeLa cells. These elements are thus useful for delineating the amplification mechanism of stringent type LINEs as well as that of SINEs.  相似文献   

18.
19.
Brassica oleracea and Arabidopsis thaliana belong to the Brassicaceae(Cruciferae) family and diverged 16 to 19 million years ago. Although the genome size of B. oleracea (approximately 600 million base pairs) is more than four times that of A. thaliana (approximately 130 million base pairs), their gene content is believed to be very similar with more than 85% sequence identity in the coding region. Therefore, this important difference in genome size is likely to reflect a different rate of non-coding DNA accumulation. Transposable elements (TEs) constitute a major fraction of non-coding DNA in plant species. A different rate in TE accumulation between two closely related species can result in significant genome size variations in a short evolutionary period. Short interspersed elements (SINEs) are non-autonomous retroposons that have invaded the genome of most eukaryote species. Several SINE families are present in B. oleracea and A. thaliana and we found that two of them (called RathE1 and RathE2) are present in both species. In this study, the tempo of evolution of RathE1 and RathE2 SINE families in both species was compared. We observed that most B. oleracea RathE2 SINEs are "young" (close to the consensus sequence) and abundant while elements from this family are more degenerated and much less abundant in A. thaliana. However, the situation is different for the RathE1 SINE family for which the youngest elements are found in A. thaliana. Surprisingly, no SINE was found to occupy the same (orthologous) genomic locus in both species suggesting that either these SINE families were not amplified at a significant rate in the common ancestor of the two species or that older elements were lost and only the recent (lineage-specific) insertions remain. To test this latter hypothesis, loci containing a recently inserted SINE in the A. thaliana col-0 ecotype were selected and characterized in several other A. thaliana ecotypes. In addition to the expected SINE containing allele and the pre-integrative allele (i.e. the "empty" allele), we observed in the different ecotypes, alleles with truncated portions of the SINE (up to the complete loss of the element) and of the immediate genomic flanking sequences. The absence of SINEs in orthologous positions between B. oleracea and A. thaliana and the presence in recently diverged A. thaliana ecotypes of alleles containing severely truncated SINEs suggest a very high rate of SINE loss in these species.  相似文献   

20.
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号