首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional analysis of tight junctions   总被引:20,自引:0,他引:20  
Epithelial and endothelial cells are joined to each other via a set of intercellular junctions that differ in their morphological appearance, composition, and function. The tight junction or zonula occludens is the intercellular junction that regulates diffusion between cells and therefore allows endothelia and epithelia to form cellular barriers that separate compartments of different composition. This intercellular gate formed by tight junctions is not only highly regulated but is size- and ion-selective and, hence, represents a semipermeable diffusion barrier. In epithelia, tight junctions form a morphological and functional border between the apical and basolateral cell surface domains. They directly contribute to the maintenance of cell surface polarity by forming a fence that prevents apical/basolateral diffusion of lipids in the outer leaflet of the plasma membrane. Here we describe a set of assays that allow the analysis of tight junctions to determine their integrity and functional state.  相似文献   

2.
Indirect immunofluorescencc, rhodamine-phalloidin staining and immunoelectron microscopy performed with the on-grid postembedding immunostaining of Lowicryl K4M sections, were used to identify actin in the branchial epithelium of the lower chordate ascidians. The ciliated cells of these invertebrates present two distinct junctional patterns. One consists only of an extended tight junction whereas in the other the tight junction is accompanied by a prominent zonula adhaerens. Evidence is given of the localization of actin at the tight junction. The absence of reaction in the zonula adhaerens suggests that the definition of this junction in the model here presented must be reconsidered.  相似文献   

3.
4.
Xenopus oocytes store large quantities of translationally dormant mRNA in the cytoplasm as storage messenger ribonucleoprotein particles (mRNPs). The Y-box proteins, mRNP3 and FRGY2/mRNP4, are major RNA binding components of maternal storage mRNPs in oocytes. In this study, we show that the FRGY2 proteins form complexes with mRNA, which leads to mRNA stabilization and translational repression. Visualization of the FRGY2-mRNA complexes by electron microscopy reveals that FRGY2 packages mRNA into a compact RNP. Our results are consistent with a model that the Y-box proteins function in packaging of mRNAs to store them stably for a long time in the oocyte cytoplasm.  相似文献   

5.
With the advent of single-molecule localization microscopy (SMLM) techniques, intracellular proteins can be imaged at unprecedented resolution with high specificity and contrast. These techniques can lead to a better understanding of cell functioning, as they allow, among other applications, counting the number of molecules of a protein specie in a single cell, studying the heterogeneity in protein spatial organization, and probing the spatial interactions between different protein species. However, the use of these techniques for accurate quantitative measurements requires corrections for multiple inherent sources of error, including: overcounting due to multiple localizations of a single fluorophore (i.e., photoblinking), undercounting caused by incomplete photoconversion, uncertainty in the localization of single molecules, sample drift during the long imaging time, and inaccurate image registration in the case of dual-color imaging. In this paper, we review recent efforts that address some of these sources of error in quantitative SMLM and give examples in the context of photoactivated localization microscopy (PALM).  相似文献   

6.
7.
In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide‐based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in‐suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample.

  相似文献   


8.
Single molecule localization microscopy (SMLM), which can provide up to an order of magnitude improvement in spatial resolution over conventional fluorescence microscopy, has the potential to be a highly useful tool for quantitative biological experiments. It has already been used for this purpose in varied fields in biology, ranging from molecular biology to neuroscience. In this review article, we briefly review the applications of SMLM in quantitative biology, and also the challenges involved and some of the solutions that have been proposed. Due to its advantages in labeling specificity and the relatively low overcounting caused by photoblinking when photo-activable fluorescent proteins (PA-FPs) are used as labels, we focus specifically on Photo-Activated Localization Microscopy (PALM), even though the ideas presented might be applicable to SMLM in general. Also, we focus on the following three quantitative measurements: single molecule counting, analysis of protein spatial distribution heterogeneity and co-localization analysis.  相似文献   

9.
10.
Epithelial and endothelial tight junctions act as a rate-limiting barrier between an organism and its environment. Continuing studies have highlighted the regulation of the tight junction barrier by cytokines. Elucidation of this interplay is vital for both the understanding of physiological tight junction regulation and the etiology of pathological conditions. This review will focus on recent advances in our understanding of the molecular mechanisms of tight junctions modulation by cytokines.  相似文献   

11.
Tight junctions from a morphological and functional boundary between the apical and basolateral cell surface domains of epithelia and endothelia, and regulate selective diffusion along the paracellular space. Two types of four-span transmembrane proteins, occludin and claudins, as well as the single-span protein JAM are associated with tight junctions. The functional analysis of these proteins starts to reveal how they are involved in the functions of tight junctions, which of their domains are important for these functions, and how they interact with each other to form the junctional diffusion barriers.  相似文献   

12.
Transmembrane proteins of tight junctions   总被引:4,自引:0,他引:4  
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.  相似文献   

13.
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.  相似文献   

14.
《Biophysical journal》2021,120(18):3901-3910
In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.  相似文献   

15.
The tight junction (TJ) was first noticed through its ability to control permeation across the paracellular route, but the homologies of its molecular components with peptides that participate in tumor suppression, nuclear addressing, and cell proliferation indicate that it may be involved in many other fundamental functions. TJs are formed by a dozen molecular species that assemble through PDZ and other protein-protein clustering promoting sequences, in response to the activation of E-cadherin. The TJ occupies a highly specific position between the apical and the basolateral domains. Its first molecular components seem to be delivered to such a position by addressing signals in their molecule and, once anchored, serve as a clustering nucleus for further TJ-associated molecules. Although in mature epithelial cells TJs and E-cadherin do not colocalize, a complex chain of reactions goes from one to the other that involves alpha-, beta-, and gamma-catenins, two different G proteins, phospholipase C, protein kinase C, calmodulin, mitogen-activated protein kinase, and molecules pertaining to the cytoskeleton, which keep the TJ sensitive to physiological requirements and local conditions (notably to Ca(2+)-dependent cell-cell contacts) throughout the life of the epithelium.  相似文献   

16.
Pointillistic based super-resolution techniques, such as photoactivated localization microscopy (PALM), involve multiple cycles of sequential activation, imaging, and precise localization of single fluorescent molecules. A super-resolution image, having nanoscopic structural information, is then constructed by compiling all the image sequences. Because the final image resolution is determined by the localization precision of detected single molecules and their density, accurate image reconstruction requires imaging of biological structures labeled with fluorescent molecules at high density. In such image datasets, stochastic variations in photon emission and intervening dark states lead to uncertainties in identification of single molecules. This, in turn, prevents the proper utilization of the wealth of information on molecular distribution and quantity. A recent strategy for overcoming this problem is pair-correlation analysis applied to PALM. Using rigorous statistical algorithms to estimate the number of detected proteins, this approach allows the spatial organization of molecules to be quantitatively described.  相似文献   

17.
Tight junctions have long been regarded as simple barriers that separate compartments of different compositions, but recent research indicates that different types of signalling proteins and transduction pathways are associated with these junctions. They receive and convert signals from the cell interior to regulate junction assembly and function, and transmit signals to the cell interior to modulate gene expression and cell behaviour.  相似文献   

18.
The kinetics of Na movement across the tight junctions of MDCK cells, grown on coverslips and perfused with HEPES or bicarbonate Ringer at 37°C, were investigated after filling the lateral intercellular spaces (LIS) of the epithelium with SBFO, an Na-sensitive fluorescent dye. Dilution and bi-ionic potential measurements showed that MDCK cell tight junctions, although cation-selective, were poorly permeable to N-methyl-D-glucamine Cl (NMDG) but freely permeable to Li. In previous experiments in which Na was replaced by NMDG, a very slow decrease in LIS Na concentration (time constant = 4.8 min) resulted. In the present study, reduction of perfusate Na from 142 to 14 or 24 mm with Na replaced by Li caused LIS Na concentration to decrease with a time constant of 0.43 min. The time constant for Na increase of the LIS was 0.28 min, significantly shorter than that for Na decrease because of the additional component of transcellular Na influx. Ouabain eliminated the transcellular component and equalized the time constants for Na influx and efflux. These results were incorporated into a mathematical model which enabled calculation of the transcellular and paracellular Na fluxes during fluid reabsorption. Regulation of the Na permeability of individual tight junctions by protein kinase A (PKA) was evaluated by treating the monolayers with the Sp-cAMPS, a cAMP substitute, or Rp-cAMPS, a specific inhibitor of PKA. Stimulation of PKA strikingly increased tight junctional permeability while PKA inhibition diminished junctional Na permeability.We thank Carter Gibson, Gennady Slobodov and Cuong Vo for valuable technical assistance.  相似文献   

19.
DNA mismatch repair (MMR) is a surveillance mechanism present in most living organisms, which repairs errors introduced by DNA polymerases. Importantly, loss of MMR function due to inactivating mutations and/or epigenetic silencing results in the accumulation of mutations and as consequence increased cancer susceptibility, as observed in Lynch syndrome patients.During the past decades important progress has been made in the MMR field resulting in the identification and characterization of essential MMR components, culminating in the in vitro reconstitution of 5′ and 3′ nick-directed MMR. However, several mechanistic aspects of the MMR reaction remain not fully understood, therefore alternative approaches and further investigations are needed.Recently, the use of imaging techniques and, more specifically, visualization of MMR components in living cells, has broadened our mechanistic understanding of the repair reaction providing more detailed information about the spatio-temporal organization of MMR in vivo. In this review we would like to comment on mechanistic aspects of the MMR reaction in light of these and other recent findings. Moreover, we will discuss the current limitations and provide future perspectives regarding imaging of mismatch repair components in diverse organisms.  相似文献   

20.
Estimates of capillary permeability for hydrophilic solutes are generally interpreted in terms of Pappenheimer's pore theory. The intercellular clefts of the capillary endothelium are considered a likely structural equivalent to the postulated system of small hydrophilic pores. However, correlation of permeabilities and cleft structure requires more knowledge of the detailed structure of the tight junctions which appear to obliterate the clefts. In this study the organization of tight junctions in endothelium of rat heart capillaries has been investigated by serial-section electron microscopy. Cross-sectioned intercellular clefts were photographed in a series of 190 consecutive sections (average thickness approximately equal to 40 nm) and in a series of 16 consecutive sections (average thickness approximately equal to 12.5 nm). Seventy-one junctional segments, each extending over 5-32 consecutive sections, were reconstructed. The endothelial junctions were organized as irregular networks of lines of contact between neighboring cells. Six pathways circumventing the lines of contact were followed through the entire junctional region of the clefts providing a tortuous pathway connecting the luminal and abluminal aspects of the clefts. Moreover, the individual lines of contact were provided with discrete discontinuities, apparently 4 nm wide. The observations support the notion that the paracellular pathway in capillary endothelium is permeable not only to small solutes but also to certain macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号