首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Innate neuroimmune dysfunction is a pathobiological feature of amyotrophic lateral sclerosis (ALS). However, links, if any, between disease and adaptive immunity are poorly understood. Thus, the role of T cell immunity in disease was investigated in human G93A superoxide dismutase 1 (SOD1) transgenic (Tg) mice and subsequently in ALS patients.

Methods and Findings

Quantitative and qualitative immune deficits in lymphoid cell and T cell function were seen in G93A-SOD1 Tg mice. Spleens of Tg animals showed reductions in size, weight, lymphocyte numbers, and morphological deficits at terminal stages of disease compared to their wild-type (Wt) littermates. Spleen sizes and weights of pre-symptomatic Tg mice were unchanged, but deficits were readily seen in T cell proliferation coincident with increased annexin-V associated apoptosis and necrosis of lymphocytes. These lymphoid deficits paralleled failure of Copolymer-1 (COP-1) immunization to affect longevity. In addition, among CD4+ T cells in ALS patients, levels of CD45RA+ (naïve) T cells were diminished, while CD45RO+ (memory) T cells were increased compared to age-matched caregivers. In attempts to correct mutant SOD1 associated immune deficits, we reconstituted SOD1 Tg mice with unfractionated naïve lymphocytes or anti-CD3 activated CD4+CD25+ T regulatory cells (Treg) or CD4+CD25 T effector cells (Teff) from Wt donor mice. While naive lymphocytes failed to enhance survival, both polyclonal-activated Treg and Teff subsets delayed loss of motor function and extended survival; however, only Treg delayed neurological symptom onset, whereas Teff increased latency between disease onset and entry into late stage.

Conclusions

A profound and progressive immunodeficiency is operative in G93A-SOD1 mice and is linked to T cell dysfunction and the failure to elicit COP-1 neuroprotective immune responses. In preliminary studies T cell deficits were also observed in human ALS. These findings, taken together, suggest caution in ascribing vaccination outcomes when these animal models of human ALS are used for study. Nonetheless, the abilities to improve neurological function and life expectancy in G93A-SOD1 Tg mice by reconstitution with activated T cells do provide opportunities for therapeutic intervention.  相似文献   

2.

Background

Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1G93A animals.

Methods/Principal Findings

Presymptomatic SOD1G93A rats (60–65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50–65%) loss of large caliber descending motor axons.

Conclusions/Significance

These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-replacement/gene therapy strategies will likely require both spinal and supraspinal targets.  相似文献   

3.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

4.

Background

Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs).

Objective

We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naïve mice.

Methods

Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers.

Results

Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.8±1.8×104 cells/ml vs. 33±11×104 in control mice) and spleen (dexamethasone: 2.8±1.9×105/spleen vs. 95±22×105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.0±1.5% vs 3.4±1.5%*; AITR+: 0.6±0.4 vs 0.5±0.3%, CD127low: 4.0±1.3 vs 5.0±3.0%* and CTLA4+: 13.8±11.5 vs 15.6±12.5%; * p<0.05).

Conclusion

Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers.  相似文献   

5.
Zhang Y  Wang D  Chen M  Yang B  Zhang F  Cao K 《PloS one》2011,6(4):e19012

Background

Induced pluripotent stem cells (iPSCs) are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients.

Methodology/Principal Findings

We transplanted 2×104, 2×105, or 2×106 cells from the established rat iPSC line M13 intramyocardially into intact or infarcted hearts of immunocompetent allogeneic rats. Transplant duration was 2, 4, or 6 weeks. Histological examination with hematoxylin-eosin staining confirmed that undifferentiated rat iPSCs could generate heterogeneous tumors in both intracardiac and extracardiac sites. Furthermore, tumor incidence was independent of cell dose, transplant duration, and the presence or absence of myocardial infarction.

Conclusions/Significance

Our study demonstrates that allogeneic iPSC transplantation in the heart will likely result in in situ tumorigenesis, and that cells leaked from the beating heart are a potential source of tumor spread, underscoring the importance of evaluating the safety of future iPSC therapy for cardiac disease.  相似文献   

6.

Background

TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6 -/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts.

Results

Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage.

Conclusions

TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake.  相似文献   

7.
Lougheed R  Turnbull J 《PloS one》2011,6(10):e23141

Background

Methylene blue (MB) is a drug with a long history and good safety profile, and with recently-described features desirable in a treatment for ALS.

Methodology/Principal Findings

We tested oral MB in inbred high-copy number SOD1 G93A mice, at 25 mg/kg/day beginning at 45 days of age. We measured disease onset, progression, and survival. There was no difference in disease onset between MB-treated mice and controls, although subgroup analysis showed a modest but statistically significant delay in disease onset in MB-treated female mice only (control 122±10.2 versus MB 129±10.0 days). MB-treated mice of both sexes spent more time in less severe stages of disease, and less time in later, more severe stages of disease. There was a non-significant trend to longer survival in MB-treated animals (control males reached endpoint at 161±14.1 days, versus 166±10.0 days for MB-treated animals, and control females reached endpoint at 171±6.2 days versus 173±13.4 days for MB-treated animals).

Conclusions/Significance

In spite of a strong theoretical rationale, MB had no significant effects on onset or survival in the inbred SOD1 G93A mouse model of ALS.  相似文献   

8.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1G93A mice.

Methods and Findings

We have evaluated locomotor function of hSOD1G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1) decrease in neuromuscular junction''s number correlates with motor impairment, (2) astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3) microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge.

Conclusions

In conclusion, precise motor analysis updates the onset of the disease in hSOD1G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular events in the natural history of the disease, but it may also provide clues in the search for biomarkers of the disease, and potential therapeutic targets.  相似文献   

9.

Background

Motor neuron degeneration in SOD1G93A transgenic mice begins at the nerve terminal. Here we examine whether this degeneration depends on expression of mutant SOD1 in muscle fibers.

Methodology/Principal Findings

Hindlimb muscles were transplanted between wild-type and SOD1G93A transgenic mice and the innervation status of neuromuscular junctions (NMJs) was examined after 2 months. The results showed that muscles from SOD1G93A mice did not induce motor terminal degeneration in wildtype mice and that muscles from wildtype mice did not prevent degeneration in SOD1G93A transgenic mice. Control studies demonstrated that muscles transplanted from SOD1G93A mice continued to express mutant SOD1 protein. Experiments on wildtype mice established that the host supplied terminal Schwann cells (TSCs) at the NMJs of transplanted muscles.

Conclusions/Significance

These results indicate that expression of the mutant protein in muscle is not needed to cause motor terminal degeneration in SOD1G93A transgenic mice and that a combination of motor terminals, motor axons and Schwann cells, all of which express mutant protein may be sufficient.  相似文献   

10.
Zhou X  Xia Z  Lan Q  Wang J  Su W  Han YP  Fan H  Liu Z  Stohl W  Zheng SG 《PloS one》2011,6(8):e23629

Background

BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.

Methodology/Principal Findings

Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff−/− mice. Th17 cells in B6.Baff−/− mice bearing a BAFF Tg (B6.Baff−/−.BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff−/− T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4+ cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff−/− mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff−/− cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff−/− mice and correlated with MOG35–55 peptide-induced Th17 cell responses.

Conclusions/Significance

Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases.  相似文献   

11.

Background

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motor neurons. The primary triggers for motor neuron degeneration are unknown but inflammation, oxidative stress and mitochondrial defects have been identified as potential contributing factors. Metformin is an anti-type II diabetes drug that has anti-inflammatory and anti-oxidant properties, can bring about mitochondrial biogenesis and has been shown to attenuate pathology in mouse models of Huntington''s disease and multiple sclerosis. We therefore hypothesized that it might increase survival in the SOD1G93A murine model of ALS.

Methodology/Principal Findings

Treatment of male and female SOD1G93A mice (n = ≥6 per sex) with 2 mg/ml metformin in the drinking water from 35 days, resulted in a significant increase in motor unit survival, as measured by in vivo electrophysiology at 100 days, in male EDL muscles (24+/−2 vs. 14+/−2 motor units, p<0.005) and female TA muscles (21+/−1 vs. 15+/−2 motor units, P = 0.0134). We therefore continued to test the effect of 0.5, 2 and 5 mg/ml metformin in the drinking water from 35 days on disease onset and progression (identified by twice weekly determination of weight and neurological score) as well as survival in male and female SOD1G93A mice (n = ≥14 per sex). Results for all groups were compared using Kaplan-Meier time to event analyses. In this survival study, metformin was unable to reduce pathology at any dose and had an unexpected dose-dependent negative effect on the onset of neurological symptoms (P = 0.0236) and on disease progression (P = 0.0362) in female mice.

Conclusions/Significance

This study suggests that metformin is a poor candidate for clinical trial in ALS patients and that the possibility of harmful effects of metformin in female ALS patients with type II diabetes should be investigated.  相似文献   

12.

Background

The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive.

Methodology/Principal Findings

We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6+ Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6+ Th cells indicate their activated status. Vaccination induces antigen-specific CCR6+ Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6+ Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice.

Conclusions/Significance

In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS.

Objective

To determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS.

Methods

At age 25 d, 102 G93A mice (56 M, 46 F) were divided into two vitamin D3 groups: 1) adequate (AI; 1 IU D3/g feed) and 2) deficient (DEF; 0.025 IU D3/g feed). At age 113 d, tibialis anterior (TA), quadriceps (quads) and brain were harvested from 42 mice (22 M and 20 F), whereas the remaining 60 mice (34 M and 26 F) were followed to endpoint.

Results

During disease progression, DEF mice had 25% (P = 0.022) lower paw grip endurance AUC and 19% (P = 0.017) lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2), DEF mice had 36% (P = 0.016) lower clinical score (CS) vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P = 0.004), confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR = 0.57; 95% CI: 0.38, 1.74; P = 0.002). Body weight-adjusted TA (AI: r = 0.662, P = 0.001; DEF: r = 0.622, P = 0.006) and quads (AI: r = 0.661, P = 0.001; DEF: r = 0.768; P<0.001) weights were strongly correlated with age at CS 2.

Conclusion

Vitamin D3 deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.  相似文献   

14.

Background

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder characterised by progressive degeneration of motor neurons leading to death, typically within 3–5 years of symptom onset. The diagnosis of ALS is largely reliant on clinical assessment and electrophysiological findings. Neither specific investigative tools nor reliable biomarkers are currently available to enable an early diagnosis or monitoring of disease progression, hindering the design of treatment trials.

Methodology/Principal Findings

In this study, using the well-established SOD1G93A mouse model of ALS and a new in-house ELISA method, we have validated that plasma neurofilament heavy chain protein (NfH) levels correlate with both functional markers of late stage disease progression and treatment response. We detected a significant increase in plasma levels of phosphorylated NfH during disease progression in SOD1G93A mice from 105 days onwards. Moreover, increased plasma NfH levels correlated with the decline in muscle force, motor unit survival and, more significantly, with the loss of spinal motor neurons in SOD1 mice during this critical period of decline. Importantly, mice treated with the disease modifying compound arimoclomol had lower plasma NfH levels, suggesting plasma NfH levels could be validated as an outcome measure for treatment trials.

Conclusions/Significance

These results show that plasma NfH levels closely reflect later stages of disease progression and therapeutic response in the SOD1G93A mouse model of ALS and may potentially be a valuable biomarker of later disease progression in ALS.  相似文献   

15.

Aims

Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse.

Methods and Results

To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93 CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93 CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment.

Conclusion

Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases.  相似文献   

16.

Aims/Hypothesis

We aimed to understand early alterations in kinin-mediated migration of circulating angio-supportive cells and dysfunction of kinin-sensitive cells in type-1 diabetic (T1D) patients before the onset of cardiovascular disease.

Methods

Total mononuclear cells (MNC) were isolated from peripheral blood of 28 T1D patients free from cardiovascular complications except mild background retinopathy (age: 34.8±1.6 years, HbA1C: 7.9±0.2%) and 28 age- and sex-matched non-diabetic controls (H). We tested expression of kinin receptors by flow cytometry and migratory capacity of circulating monocytes and progenitor cells towards bradykinin (BK) in transwell migration assays. MNC migrating towards BK (BKmig) were assessed for capacity to support endothelial cell function in a matrigel assay, as well as generation of nitric oxide (NO) and superoxide (O2 *) by using the fluorescent probes diaminofluorescein and dihydroethidium.

Results

CD14hiCD16neg, CD14hiCD16pos and CD14loCD16pos monocytes and circulating CD34pos progenitor cells did not differ between T1D and H subjects in their kinin receptor expression and migration towards BK. T1D BKmig failed to generate NO upon BK stimulation and supported endothelial cell network formation less efficiently than H BKmig. In contrast, O2 * production was similar between groups. High glucose disturbed BK-induced NO generation by MNC-derived cultured angiogenic cells.

Conclusions/Interpretation

Our data point out alterations in kinin-mediated functions of circulating MNC from T1D patients, occurring before manifest macrovascular damage or progressed microvascular disease. Functional defects of MNC recruited to the vessel wall might compromise endothelial maintenance, initially without actively promoting endothelial damage, but rather by lacking supportive contribution to endothelial regeneration and healing.  相似文献   

17.

Background

Chemotherapy is still a critical issue in the management of leishmaniasis. Until recently, pentavalent antimonials, amphotericin B or pentamidine compounded the classical arsenal of treatment. All these drugs are toxic and have to be administered by the parenteral route. Tamoxifen has been used as an antiestrogen in the treatment and prevention of breast cancer for many years. Its safety and pharmacological profiles are well established in humans. We have shown that tamoxifen is active as an antileishmanial compound in vitro, and in this paper we analyzed the efficacy of tamoxifen for the treatment of mice infected with Leishmania amazonensis, an etiological agent of localized cutaneous leishmaniasis and the main cause of diffuse cutaneous leishmaniasis in South America.

Methodology/Principal Findings

BALB/c mice were infected with L. amazonensis promastigotes. Five weeks post-infection, treatment with 15 daily intraperitoneal injections of 20 mg/kg tamoxifen was administered. Lesion and ulcer sizes were recorded and parasite burden quantified by limiting dilution. A significant decrease in lesion size and ulcer development was noted in mice treated with tamoxifen as compared to control untreated animals. Parasite burden in the inoculation site at the end of treatment was reduced from 108.5±0.7 in control untreated animals to 105.0±0.0 in tamoxifen-treated mice. Parasite load was also reduced in the draining lymph nodes. The reduction in parasite number was sustained: 6 weeks after the end of treatment, 1015.5±0.5 parasites were quantified from untreated animals, as opposed to 105.1±0.1 parasites detected in treated mice.

Conclusions/Significance

Treatment of BALB/c mice infected with L. amazonensis for 15 days with tamoxifen resulted in significant decrease in lesion size and parasite burden. BALB/c mice infected with L. amazonensis represents a model of extreme susceptibility, and the striking and sustained reduction in the number of parasites in treated animals supports the proposal of further testing of this drug in other models of leishmaniasis.  相似文献   

18.

Aims

Endogenous cardiac progenitor cells, expanded from explants via cardiosphere formation, present a promising cell source to prevent heart failure following myocardial infarction. Here we used cine-magnetic resonance imaging (MRI) to track administered cardiosphere-derived cells (CDCs) and to measure changes in cardiac function over four months in the infarcted rat heart.

Methods and Results

CDCs, cultured from neonatal rat heart, comprised a heterogeneous population including cells expressing the mesenchymal markers CD90 and CD105, the stem cell marker c-kit and the pluripotency markers Sox2, Oct3/4 and Klf-4. CDCs (2×106) expressing green fluorescent protein (GFP+) were labelled with fluorescent micron-sized particles of iron oxide (MPIO). Labelled cells were administered to the infarcted rat hearts (n = 7) by intramyocardial injection immediately following reperfusion, then by systemic infusion (4×106) 2 days later. A control group (n = 7) was administered cell medium. MR hypointensities caused by the MPIOs were detected at all times and GFP+ cells containing MPIO particles were identified in tissue slices at 16 weeks. At two days after infarction, cardiac function was similar between groups. By 6 weeks, ejection fractions in control hearts had significantly decreased (47±2%), but this was not evident in CDC-treated hearts (56±3%). The significantly higher ejection fractions in the CDC-treated group were maintained for a further 10 weeks. In addition, CDC-treated rat hearts had significantly increased capillary density in the peri-infarct region and lower infarct sizes. MPIO-labelled cells also expressed cardiac troponin I, von Willebrand factor and smooth muscle actin, suggesting their differentiation along the cardiomyocyte lineage and the formation of new blood vessels.

Conclusions

CDCs were retained in the infarcted rat heart for 16 weeks and improved cardiac function.  相似文献   

19.

Background

Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles.

Principal Findings

To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied.Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm2±5,922 vs. 4,189 µm2±1,130, p<0.001).

Conclusions

Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks.  相似文献   

20.

Aim

ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO''s, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×103 µm2), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×103 µm2; apoE KO: 402±78×103 µm2, respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×103 µm2). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).

Conclusions

Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号