首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila, heat shock (HS) during the pupal stage chronically hinders adult locomotor performance by disrupting wing development and cellular and/or tissue-level mechanisms that support walking and flight. Furthermore, heat pretreatment (PT) protects locomotor function against these disruptions. HS flies with abnormal wings were less able to alter trajectory in free fall relative to control, PT-only, and PT+HS wild-type flies. This deficit was less severe but still present in HS-only flies with wild-type wings. Transgenic increases in the copies of genes encoding the major inducible heat-shock protein of Drosophila melanogaster, Hsp70, also protected walking ability from disruption due to pupal HS. Walking velocity did not differ between excision (five natural hsp70 copies) and extra-copy (five natural and six transgenic hsp70 copies) flies in the control, PT, and PT+HS groups, nor did velocity vary among these thermal treatment groups. HS dramatically reduced walking velocity, however, but this effect occurred primarily in the excision flies. These results suggest that Hsp70 and other mechanisms protect against heat-induced locomotor impairment.  相似文献   

2.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.  相似文献   

3.
Bang S  Hyun S  Hong ST  Kang J  Jeong K  Park JJ  Choe J  Chung J 《PLoS genetics》2011,7(3):e1001346
The ability to respond to environmental temperature variation is essential for survival in animals. Flies show robust temperature-preference behaviour (TPB) to find optimal temperatures. Recently, we have shown that Drosophila mushroom body (MB) functions as a center controlling TPB. However, neuromodulators that control the TPB in MB remain unknown. To identify the functions of dopamine in TPB, we have conducted various genetic studies in Drosophila. Inhibition of dopamine biosynthesis by genetic mutations or treatment with chemical inhibitors caused flies to prefer temperatures colder than normal. We also found that dopaminergic neurons are involved in TPB regulation, as the targeted inactivation of dopaminergic neurons by expression of a potassium channel (Kir2.1) induced flies with the loss of cold avoidance. Consistently, the mutant flies for dopamine receptor gene (DopR) also showed a cold temperature preference, which was rescued by MB-specific expression of DopR. Based on these results, we concluded that dopamine in MB is a key component in the homeostatic temperature control of Drosophila. The current findings will provide important bases to understand the logic of thermosensation and temperature preference decision in Drosophila.  相似文献   

4.
The effect of heat stress (38 degrees C) on the content of octopamine (OA) and 20-hydroxyecdysone (20HE) was studied under normal and stressful conditions in adult flies of Drosophila virilis lines contrasting in the level of the juvenile hormone (JH). The wild-type flies (line 101) exhibited a pronounced sex dimorphism for the content of both OA and 20HE, which was substantially lower in this line than in flies of the mutant line 147. The level of both hormones increased in flies of line 101 exposed to heat stress, whereas it remained unchanged in flies of line 147 under the same conditions. The effect of heat stress on the level of JH metabolism and fertility was also studied in D. melanogaster wild-type lines and lines carrying mutations in genes responsible for OA and DA syntheses. In octopamineless females of the T beta hnM18 line and in females of the Ste line characterized by a doubled content of DA, JH degradation differed from normal: it was increased in both young and mature T beta hnM18 females, while decreased in young and increased in mature Ste flies. Fertility was substantially lower in the Ste than in the wild-type line. Flies of all of the D. melanogaster lines produced a stress response; however, in mutant lines, both fertility and stress reactivity of the systems controlling JH metabolism differed significantly from that of the wild-type lines. The role of JH, 20HE, OA, and DA interaction in regulation of Drosophila reproduction under stressful conditions is discussed.  相似文献   

5.
The dopamine (DA) content and the level of juvenile hormone (JH) degradation were studied in females of the wild-type Canton S strain and the ecdysoneless1 (ecd1) mutant, which does not produce ecdysone at a restrictive temperature (29 degrees C). Exposure at the restrictive temperature considerably increased the JH-hydrolyzing activity and the DA content in five-day ecd1 females compared with flies of both strains growing at 19 degrees C and Canton S females exposed at 29 degrees C. In one-day ecd1 females, the level of JH degradation also increased at the restrictive temperature, but the DA content was low. The effect of ecdysone deficiency on the stress response in Drosophila melanogaster females was studied using changes in DA content and JH degradation were used as indices. The ecd1 mutation did not prevent the initiation of the stress response in females exposed at the restrictive temperature, but changed its intensity (stress reactivity). The interaction of 20-hydroxyecdysone with JH and DA in regulating Drosophila reproduction under normal conditions and in stress is discussed.  相似文献   

6.
7.
8.
Drosophila melanogaster (fruit fly) is a well-established model organism for genetic studies of development and aging. We examined the effects of lethal ionizing radiation on male and female adult Drosophila of different ages, using doses of radiation from 200 to 1500 Gy. Fifty percent lethality 2 days postirradiation (LD(50/2)) in wild-type 1-day-old adult fruit flies was approximately 1238 Gy for males and 1339 Gy for females. We observed a significant age-dependent decline in the radiation resistance of both males and females. Radiation damage is postulated to occur by the generation of oxygen radicals. An age-related decline in the ability of flies to resist an agent that induces oxygen radicals, paraquat, was observed when comparing 10- and 20-day adults. Female flies are more resistant to paraquat than male flies. Oxidative stress mediated by paraquat was additive with sublethal exposures to radiation in young adults. Therefore, the ability to repair the damage caused by oxygen radicals seems to decline with the age of the flies. Because Drosophila adults are largely post-mitotic, our data suggest that adult Drosophila melanogaster can serve as an excellent model to study the factors responsible for radiation resistance in post-mitotic tissue and age-dependent changes in this resistance.  相似文献   

9.
In this study we show for the first time that moderate high larval density induces Hsp70 expression in Drosophila melanogaster larvae. Larval crowding led to both increased mean and maximal longevity in adults of both sexes. Two different measures of heat-stress resistance increased in adult flies developed at high density compared to flies developed at low density. The hardening-like effect of high larval density carried over to the adult life stage. The hardening memory (the period of increased resistance after hardening) was long compared to hardening of adult flies, and possibly lasts throughout life. The increase in resistance in adults following development at high larval density seemed not to be connected to Hsp70 itself, since Hsp70 expression level in adult flies after hardening was independent of whether larvae developed at low or high densities. More likely, Hsp70 may be one of many components of the stress response resulting in hardening.  相似文献   

10.
11.
Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with (75)Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms.  相似文献   

12.
Laboratory studies on Drosophila have revealed that resistance to one environmental stress often correlates with resistance to other stresses. There is also evidence on genetic correlations between stress resistance, longevity and other fitness-related traits. The present work investigates these associations using artificial selection in Drosophila melanogaster. Adult flies were selected for increased survival after severe cold, heat, desiccation and starvation stresses as well as increased heat-knockdown time and lifespan (CS, HS, DS, SS, KS and LS line sets, respectively). The number of selection generations was 11 for LS, 27 for SS and 21 for other lines, with selection intensity being around 0.80. For each set of lines, the five stress-resistance parameters mentioned above as well as longevity (in a nonstressful environment) were estimated. In addition, preadult developmental time, early age productivity and thorax length were examined in all lines reared under nonstressful conditions. Comparing the selection lines with unselected control revealed clear-cut direct selection responses for the stress-resistance traits. Starvation resistance increased as correlated response in all sets of selection lines, with the exception of HS. Positive correlated responses were also found for survival after cold shock (HS and DS) and heat shock (KS and DS). With regard to values of resistance across different stress assays, the HS and KS lines were most similar. The resistance values of the SS lines were close to those of the LS lines and tended to be the lowest among all selection lines. Developmental time was extended in the SS and KS lines, whereas the LS lines showed a reduction in thorax length. The results indicate a possibility of different multiple-stress-resistance mechanisms for the examined traits and fitness costs associated with stress resistance and longevity.  相似文献   

13.
The resistance of courtship behavior and communicative sound production to heat shock (37 degrees C, 30 min) was studied in wild-type Canton S (CS) male Drosophila melanogaster and males of two strains with defects in the kynurenine pathway of tryptophan metabolism (KPTM) caused by mutations cinnabar (block at the level of kynurenine-3-hydroxylase leading to accumulation of kynurenic acid, a neuroprotective metabolite, in the brain) and cardinal (block at the level of phenoxazinone synthetase causing accumulation of 3-hydroxykynurenine, an oxidative stress generator, in the brain). Males of each strain were divided into four groups. Males from control groups were not exposed to heat shock. The other groups were exposed to heat shock at the late embryonic/early larval (the first instar) developmental stage, when mushroom bodies are formed (HS1 groups); at the prepupal stage, when the brain central complex develops (HS2 groups); or at the imago stage 1 h before the experiment (HS groups). All males were tested at an age of five days. Virgin and fertilized five-day-old CS females served as courtship objects. The courtship behavior and singing of control CS and cinnabar males were similar. Control cardinal males also had high motivation, but their courtship efficiency was lower because of less precise movements (wing vibration was often not accompanied by sound production) and hyperexcitability. Exposure of first-instar larvae to heat shock had almost no effect on behavior or singing of adult males of any strain. In cardinal males exposed to heat shock at the prepupal stage or, especially, at the imago stage 1 h before the test (the HS2 and HS groups), courtship was strongly impaired, and various distortions appeared in their sound signals, which indicated disturbance of coordination between elements of the song center and their interaction with pacemakers. These effects were much milder or absent altogether in HS2 and HS wild-type males and, especially, cinnabar males. Thus, permanent excess of 3-hydroxykynurenine in the male brain dramatically decreased their stress resistance. In contrast, excess of kynurenic acid alleviated the consequences of stress.  相似文献   

14.
Theoretical models predict that sexual conflict can drive reproductive isolation by decreasing the probability of matings between individuals from allopatric populations. A recent study in dung flies supported this prediction. To test the generality of this finding we used replicate lines of Drosophila melanogaster that had been selected under high, medium and low levels of sexual conflict, in which the females had evolved differences in their level of resistance to male-induced harm. We compared the proportion of virgin pairs that mated by set time points, for flies from the same replicate within each sexual conflict level vs. flies from different replicates within each sexual conflict level. The results did not support the prediction that, in D. melanogaster, sexual conflict drives population divergence via changes in female willingness to mate. The results were unlikely to be explained by differential inbreeding or by a lack of response to sexual conflict.  相似文献   

15.
N D Khaustova  S V Morgun 《Genetika》1999,35(5):600-605
Physico-chemical properties of ADH and some fitness parameters were examined in two mutant (cn and vg) and two wild-type (C-S and D) strains of Drosophila melanogaster. It was shown that, under the experimental conditions, longevity, fecundity and heat resistance did not depend on the activity and the electrophoretic mobility of enzymes. The Adh gene-enzyme system of the mutants was analyzed in relation to the saturation of their genotypes with genes of wild-type flies having different allelic control of the enzyme. ADH activity was shown to be positively correlated with the frequency of F allele of the structural gene (r = 0.84), whereas thermostability of the enzyme was not associated with electrophoretic mobility. Low thermostability of ADH in vg mutants, which was correlated with low heat resistance (r = 0.94), is assumed to be controlled by the thermostable allele Adh Fs.  相似文献   

16.
We examined spontaneous locomotory behavior and respiratory pattern in replicate outbred populations of Drosophila melanogaster selected for desiccation resistance or starvation resistance, as well as their control and ancestral populations. Use of these populations allows us to compare evolved behavioral changes in response to different stress selections. We also reasoned that previously observed changes in respiratory patterns following selection for increased desiccation resistance might be associated with or even caused by changes in locomotory behavior. We measured spontaneous locomotory behavior using video recordings and a computer-based tracking system while simultaneously measuring patterns of CO(2) release from single fruit flies. Statistically significant differences in behavior were observed to be correlated with selection regime. Reduced levels of spontaneous locomotory activity were observed in moist air in both desiccation- and starvation-selected populations compared with their controls. Interestingly, in dry air, only the desiccation-selected flies continue to show reduced spontaneous locomotory activity. No correlation was found between the level of locomotory activity of individual flies and the respiratory patterns of those flies, indicating that the reduced activity levels that have evolved in these flies did not directly cause the documented changes in their respiratory pattern.  相似文献   

17.
The effect of a rise in dopamine (DA) level as a result of a mutation, stress or pharmacological treatment on the activity of the enzyme of its synthesis, alkaline phosphatase (ALP) in females of Drosophila virilis and Drosophila melanogaster has been studied. It has been found that regardless of its nature, a rise in DA level has a negative effect on ALP activity, which indicates that DA down-regulates activity of the enzyme. The effects of bromocriptine (an agonist of Drosophila dopamine 2-like receptor (DD2R)) on ALP activity have been studied. ALP activity was found to drop in response to bromocriptine in flies. Conversely ALP activity was increased in flies with reduced DD2R expression (i.e. Actin5C-Gal4 > UAS-ds-DD2R RNA-interference flies) vs. corresponding controls (i.e. Actin5C-Gal4 > w1118 flies). Bromocriptine treatment of RNAi flies rescues ALP activity to the level typical of Actin5C-Gal4 > w1118 flies. A change in DD2R number or availability was found not to prevent the response of ALP to heat stress, but to change the intensity of its response to the stress exposure. The role of D2-like receptors in down-regulation of ALP activity by DA and in ALP response to stressor in Drosophila is discussed.  相似文献   

18.
19.
20.
In Drosophila, brain stimulation of the giant fiber pathway brings about highly stereotyped electrical responses in target muscles involved in the escape response. Both the order of muscle response and the latency of that response are predictable in wild-type flies. The neuronal circuit to the targets is well defined and has been used in the analysis of a number of mutant phenotypes, including induced anomalies in temperature-sensitive (ts) mutations such as shibire (shi). It has been assumed that the stereotyped response includes simultaneous activation of all six fibers of the wing depressor muscle, DLM, resulting in equal latencies for all fibers. We report here a small, but distinct, inherent difference in latency between two sets of DLM fibers in a proportion of two wild-type strains as well as in a strain carrying the ts mutation shi. This difference may occur on one or both sides of an individual, is stable over time, and persists when the motor axon is stimulated peripherally. These results, due to the circuit leading to the target, suggest that the difference in latency arises peripherally. In flies reared at the shi permissive temperature (22 degrees C), the difference is more common in shi than in wild-type flies; however, in shi flies reared at 18 degrees C, the prevalence resembles that of wild-type flies. This indicates a subtle expression of the shi defect even at the presumed permissive temperature of 22 degrees C. The difference in latency is similar to that induced in shi flies whose development is affected by pupal heat pulse. Thus, correct interpretation of differences in latency, e.g., in shi/wild-type mosaic flies or in flies with mutations affecting the GF pathway, requires recognition of the inherent asynchrony that can occur between DLM fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号