首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
2.
Physical anthropologists have devoted considerable attention to the structure and function of the primate prehensile tail. Nevertheless, previous morphological studies have concentrated solely on adults, despite behavioral evidence that among many primate taxa, including capuchin monkeys, infants and juveniles use their prehensile tails during a greater number and greater variety of positional behaviors than do adults. In this study, we track caudal vertebral growth in a mixed longitudinal sample of white-fronted and brown capuchin monkeys (Cebus albifrons and Cebus apella). We hypothesized that young capuchins would have relatively robust caudal vertebrae, affording them greater tail strength for more frequent tail-suspension behaviors. Our results supported this hypothesis. Caudal vertebral bending strength (measured as polar section modulus at midshaft) scaled to body mass with negative allometry, while craniocaudal length scaled to body mass with positive allometry, indicating that infant and juvenile capuchin monkeys are characterized by particularly strong caudal vertebrae for their body size. These findings complement previous results showing that long bone strength similarly scales with negative ontogenetic allometry in capuchin monkeys and add to a growing body of literature documenting the synergy between postcranial growth and the changing locomotor demands of maturing animals. Although expanded morphometric data on tail growth and behavioral data on locomotor development are required, the results of this study suggest that the adult capuchin prehensile-tail phenotype may be attributable, at least in part, to selection on juvenile performance, a possibility that deserves further attention.  相似文献   

3.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

4.
Chronic mild unpredictable stress (CUMS) causes neurogenesis damage in the hippocampus and depressive-like behaviors such as cognitive impairment. Radix Scutellariae from the dry root of Scutellaria baicalensis Georgi, with the common name Baikal skullcap. In this study, we demonstrated that Radix Scutellariae (RS 500, 1000 mg/kg) notably improved the behavior of the rat, such as shortened escape latency in morris maze test, reduced immobility time in tail suspension test and in forced swimming test, as well as increased sucrose consumption in sucrose preference test. In addition, RS alleviated the damage CUMS-induced neurogenesis and the reduced levels of BrdU; DCX and NeuN, the neurons hallmark of hippocampus neurogenesis. Moreover, associated proteins in cAMP/PKA pathway were up-regulated after RS treatment. By HPLC analysis, we found that RS decoction contains four main components, including baicalin, baicalein, wogonoside and wogonin, respectively. In conclusion, RS could exert a natural antidepressant with improving depressive-like behavior via regulation of cAMP/PKA neurogenesis pathway.  相似文献   

5.
Lizard tail autotomy is considered an efficient anti-predator strategy that allows animals to escape from a predator attack. However, since the tail also is involved in many alternative functions, tailless animals must cope with several costs following autotomy. Here we explicitly evaluate the consequences of tail autotomy for two costs that have been virtually unexplored: 1. we test whether the anatomical change that occurs after tail loss causes a reduction in the role of the tail as a distraction mechanism to predators; 2. we analyzed whether tail synthesis comprises an energetically costly process in itself, by directly comparing the cost of maintenance before and after autotomy. We found that original tails displace further and at greater velocity than regenerated tails, indicating that the anti-predation responses of a lizard probably changes according to whether its tail is original or regenerated. With regard to the energetic cost of tail synthesis, we observed a significant increase in the standard metabolic rate, which rose 36% in relation to the value recorded prior to tail loss. This result suggests that the energetic cost of tail synthesis itself could be enough to affect lizard fitness.  相似文献   

6.
Male guppies Poecilia reticulata exhibit two types of mating behavior, i.e., courtship displays for cooperative copulation and sneaking attempts for forced copulation. The frequencies of the two male mating behaviors are influenced by tail length. Males possessing long tails exhibit courtship displays less frequently and sneaking attempts more frequently than those possessing short tails, even though they have similar total lengths. To examine whether these male behavioral tendencies depending on tail length are genetically controlled or are determined by tail length per se, tail length manipulation was conducted. The tail lengths of males that had previously possessed longer tails were surgically shortened to a greater degree than those of their counterparts that had previously possessed shorter tails. Although the frequencies of the mating behaviors exhibited by the latter males did not apparently change, the former males clearly increased the frequency of courtship displays and decreased that of sneaking attempts following tail shortening. These results indicate that males adjust the frequencies of the two mating behaviors according to their tail length. Since females avoid cooperative mating with males possessing long tails, the change in mating behavioral patterns by males depending on their tail length may increase their mating opportunities.  相似文献   

7.
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context.  相似文献   

8.
Integrin adhesion receptors can signal in two directions: first, they can regulate cellular behaviors by modulating cellular signaling enzymes ("outside-in signaling"); second, cells can regulate the affinity of integrins ("inside-out signaling") by such pathways. Integrin beta cytoplasmic domains (tails) mediate both types of signaling, and Src family kinases (SFKs) and talin, which bind to beta tails, are important for integrin signaling. Here, we utilized "homology scanning" mutagenesis to identify beta tail mutants selectively defective in c-Src binding and found that amino acid exchanges affecting a combination of an Arg and Thr residue in the integrin beta3 tail control the binding specificity for SFKs but have no effect on talin binding. Using beta tail mutants at these residues, we found that SFK binding to integrin beta tails is dispensable for inside-out signaling but is obligatory for cell spreading, a marker of outside-in signaling. Conversely, we found that point mutations that disrupt talin binding abolish integrin activation, but they do not inhibit SFK binding to the beta3 tail or the initiation of outside-in signaling once the integrins are in a high affinity form. Thus, we show that inside-out and outside-in integrin signaling are mediated by distinct and separable interactions of the integrin beta tails. Furthermore, based on our results, it is possible to discern the relative contributions of the direction of integrin signaling on biological functions in cell culture and, ultimately, in vivo.  相似文献   

9.
Painted redstart, Myioborus pictus, and its congeners in Central and South America, belong to a small fraction of insectivorous flush‐pursuing birds. Unlike most of the small insectivorous birds, which glean prey from substrates, the flush pursuers spread and pivot their conspicuously patterned tails and wings. This display triggers prey escape flights which are hypothesized to occur through visual stimulation of prey escape circuits [giant descending neuron cluster (GDNC) in Diptera] sensitive to the looming motion of an approaching bird, translational motion of a pivoting body with widely spread tail and contrast of the white‐black plumage pattern. In this paper, data from field observations of redstarts and experiments with bird models show an increase in the frequency of prey escapes away from the strong visual stimulation of an open tail, and in the direction opposite to that of the horizontal translational motion present in the pivots. We discuss how the effect on prey escape direction may enhance prey interception capabilities of redstarts during aerial pursuits. Combined with an earlier study the results show that, unlike the movements of typical gleaner–foragers, the flush displays by redstarts affect prey escape direction in a manner that may facilitate prey tracking and capture by birds. Because the GDNs, which mediate escape initiation, are not sensitive to motion direction, we hypothesize that other neurons, in addition to the GDNs, are involved in influencing the direction of escape responses.  相似文献   

10.
The core histone tail domains are key regulatory elements in chromatin. The tails are essential for folding oligonucleosomal arrays into both secondary and tertiary structures, and post-translational modifications within these domains can directly alter DNA accessibility. Unfortunately, there is little understanding of the structures and interactions of the core histone tail domains or how post-translational modifications within the tails may alter these interactions. Here we review NMR, thermal denaturation, cross-linking, and other selected solution methods used to define the general structures and binding behavior of the tail domains in various chromatin environments. All of these methods indicate that the tail domains bind primarily electrostatically to sites within chromatin. The data also indicate that the tails adopt specific structures when bound to DNA and that tail structures and interactions are plastic, depending on the specific chromatin environment. In addition, post-translational modifications, such as acetylation, can directly alter histone tail structures and interactions.  相似文献   

11.
An oligonucleotide probe tailed with deoxyadenosine-5'-triphosphate or deoxythymine-5'-triphosphate is detectable with high sensitivity, but has a major drawback--the tail co-hybridizes specifically to complementary sequences. This can be a problem when screening cDNA clones that contain poly(dA) sequences. While it is possible to mask the cDNA tail with unlabeled poly(dA) or poly(A) oligonucleotides, false-positive clones are still produced because complete masking of extremely long (dA) tails is difficult. As a result, only cDNA clones that have extremely long poly(dA) sequences are often obtained by hybridization screening using tailed probes. In this report, we describe an oligonucleotide probe tailed with DIG-labeled nucleotide in combination with deoxyinosine-5'-triphosphate that was highly specific and sensitive to cDNAs. Terminal deoxynucleotidyl transferase efficiently adds dI nucleotides to the 3'-end. The dI of the tails did not pair with any nucleotides under stringent hybridization so that the specificity of hybridization assays remained high without affecting the sensitivity of the test. Colony hybridization experiments demonstrated that there were very few (1 of 80 tested) false positives using this technique. Its use may increase the accuracy of cDNA screening.  相似文献   

12.
After Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. The Listeria then nucleates actin filaments from its surface. These actin filaments rearrange to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. Since individual actin filaments appear to remain in their same positions in the tail in vitro after extraction with detergent, the component filaments must be cross-bridged together. From careful examination of the distribution of actin filaments attached to the surface of Listeria and in the tail, and the fact that during and immediately after division filaments are not nucleated from the new wall formed during septation, we show how a cloud of actin filaments becomes rearranged into a tail simply by the mechanics of growth. From lineage studies we can relate the length of the tail to the age of the surface of Listeria and make predictions as to the ratio of Listeria with varying tail lengths at a particular time after the initial infection. Since we know that division occurs about every 50 min, after 4 h we would predict that if we started with one Listeria in a macrophage, 16 bacteria would be found, two with long tails, two with medium tails, four with tiny tails, and eight with no tails or a ratio of 1:1:2:4. We measured the lengths of the tails on Listeria 4 h after infection in serial sections and confirmed this prediction. By decorating the actin filaments that make up the tail of Listeria with subfragment 1 of myosin we find (a) that the filaments are indeed short (maximally 0.3 microns in length); (b) that the filament length is approximately the same at the tip and the base of the tail; and (c) that the polarity of these filaments is inappropriate for myosin to be responsible or to facilitate movement through the cytoplasm, but the polarity insures that the bacterium will be located at the tip of a pseudopod, a location that is essential for spreading to an adjacent cell. Putting all this information together we can begin to unravel the problem of how the Listeria forms the cytoskeleton and what is the biological purpose of this tail. Two functions are apparent: movement and pseudopod formation.  相似文献   

13.
A mood stabilizing and antidepressant response to lithium is only found in a subgroup of patients with bipolar disorder and depression. Identifying strains of mice that manifest differential behavioral responses to lithium may assist in the identification of genomic and other biologic factors that play a role in lithium responsiveness. Mouse strains were tested in the forced swim test (FST), tail suspension test (TST) and open-field test after acute and chronic systemic and intracerebroventricular (ICV) lithium treatments. Serum and brain lithium levels were measured. Three (129S6/SvEvTac, C3H/HeNHsd and C57BL/6J) of the eight inbred strains tested, and one (CD-1) of the three outbred strains, showed an antidepressant-like response in the FST following acute systemic administration of lithium. The three responsive inbred strains, as well as the DBA/2J strain, displayed antidepressant-like responses to lithium in the FST after chronic administration of lithium. However, in the TST, acute lithium resulted in an antidepressant-like effect only in C3H/HeNHsd mice. Only C57BL/6J and DBA/2J showed an antidepressant-like response to lithium in the TST after chronic administration. ICV lithium administration resulted in a similar response profile in BALB/cJ (non-responsive) and C57BL/6J (responsive) strains. Serum and brain lithium concentrations showed that behavioral results were not because of differential pharmacokinetics of lithium in individual strains, suggesting that genetic factors likely regulate these behavioral responses to lithium. Our results indicate that antidepressant-like responses to lithium in tests of antidepressant efficacy varies among genetically diverse mouse strains. These results will assist in identifying genomic factors associated with lithium responsiveness and the mechanisms of lithium action.  相似文献   

14.
Induced defences, such as the predator avoidance morphologies in amphibians, result from spatial or temporal variability in predation risk. One important component of this variability should be the difference in hunting strategies between predators. However, little is known about how specific and effective induced defences are to different types of predators. We analysed the impact of both pursuing (fish, Gasterosteus aculeatus) and sit-and-wait (dragonfly, Aeshna cyanea) predators on tadpole (Rana dalmatina) morphology and performance (viz locomotive performance and growth rate). We also investigated the potential benefits of the predator-induced phenotype in the presence of fish predators. Both predators induced deeper tail fins in tadpoles exposed to threat of predation, and stickleback presence also induced longer tails and deeper tail muscles. Morphological and behavioural differences resulted in better escape ability of stickleback-induced tadpoles, leading to improved survival in the face of stickleback predation. These results clearly indicate that specific morphological responses to different types of predators have evolved in R. dalmatina. The specific morphologies suggest low correlations between the traits involved in the defence. Independence of traits allows prey species to fine-tune their response according to current predation risk, so that the benefit of the defence can be maximal.  相似文献   

15.
Wang T  Fang ZM  Lei JH  Guan F  Liu WQ  Bartlett A  Whitfield P  Li YL 《Parasitology》2012,139(2):244-247
A traditional assumption is that schistosome cercariae lose their tails at the onset of penetration. It has, however, recently been demonstrated that, for Schistosoma mansoni, cercarial tails were not invariably being shed as penetration took place and a high proportion of tails entered human skin under experimental conditions. This phenomenon was termed delayed tail loss (DTL). In this paper, we report that DTL also happens with S. japonicum cercariae during penetration of mouse skin. It occurred at all cercarial densities tested, from as few as 10 cercariae/2·25 cm(2) of mouse skin up to 200 cercariae. Furthermore, it was demonstrated that there was a density-dependent increase in DTL as cercarial densities increased. No such density-dependent enhancement was shown for percentage attachment over the same cercarial density range.  相似文献   

16.
Tail biting is a serious animal welfare and economic problem in pig production. Tail docking, which reduces but does not eliminate tail biting, remains widespread. However, in the EU tail docking may not be used routinely, and some ‘alternative’ forms of pig production and certain countries do not allow tail docking at all. Against this background, using a novel approach focusing on research where tail injuries were quantified, we review the measures that can be used to control tail biting in pigs without tail docking. Using this strict criterion, there was good evidence that manipulable substrates and feeder space affect damaging tail biting. Only epidemiological evidence was available for effects of temperature and season, and the effect of stocking density was unclear. Studies suggest that group size has little effect, and the effects of nutrition, disease and breed require further investigation. The review identifies a number of knowledge gaps and promising avenues for future research into prevention and mitigation. We illustrate the diversity of hypotheses concerning how different proposed risk factors might increase tail biting through their effect on each other or on the proposed underlying processes of tail biting. A quantitative comparison of the efficacy of different methods of provision of manipulable materials, and a review of current practices in countries and assurance schemes where tail docking is banned, both suggest that daily provision of small quantities of destructible, manipulable natural materials can be of considerable benefit. Further comparative research is needed into materials, such as ropes, which are compatible with slatted floors. Also, materials which double as fuel for anaerobic digesters could be utilised. As well as optimising housing and management to reduce risk, it is important to detect and treat tail biting as soon as it occurs. Early warning signs before the first bloody tails appear, such as pigs holding their tails tucked under, could in future be automatically detected using precision livestock farming methods enabling earlier reaction and prevention of tail damage. However, there is a lack of scientific studies on how best to respond to outbreaks: the effectiveness of, for example, removing biters and/or bitten pigs, increasing enrichment, or applying substances to tails should be investigated. Finally, some breeding companies are exploring options for reducing the genetic propensity to tail bite. If these various approaches to reduce tail biting are implemented we propose that the need for tail docking will be reduced.  相似文献   

17.
Escape response, triggered by an approaching predator, is acommon antipredatory adaptation of arthropods against insectivores.The painted redstart, Myioborus pictus, represents insectivorousbirds that exploit such antipredatory behaviors by flushing,chasing, and preying upon flushed arthropods. In field experimentsI showed that redstarts evoke jump and flight in prey by spreadingwings and tail: this display increased frequency of aerial chasesby redstarts. Artificial models with spread tails also elicitedescape responses more often than models with closed tails and wings.The white patches on black wings and tails additionally help:the frequency of chases decreased when the white patches werecovered with black dye. Black models also tended to elicit escaperesponse less often than black-and-white models did, at leastin some situations. Hence, the prey's ability to detect birdsand to flee could cause the evolution of predators specializedat using conspicuous behavior and contrast in body colorationto elicit and exploit such antipredatory responses. Redstartsconstitute only a small proportion of the predatory guild, andtheir adaptations to exploit the prey's behavior illustratethe theoretically modeled "rare enemy" effect present in multispeciespredator-prey systems. This is the first experimental studyof morphological and behavioral adaptations of a rare predatorthat both elicits and exploits antipredator escape behaviorof its prey against more common predators. Hence, the studydocuments a behavior that could be evolutionarily explainedonly if indirect interactions in predator-prey communities aretaken into account.  相似文献   

18.
Listeria monocytogenes and some other infectious bacteria polymerize their host cell's actin into tails that propel the bacteria through the cytoplasm. Here we show that reconstitution of this behavior in simpler media resolves two aspects of the mechanism of force transduction. First, since dilute reconstitution media have no cytoskeleton, we consider what keeps the tail from being pushed backward rather than the bacterium being propelled forward. The dependence of the partitioning of motion on the friction coefficient of the tail is derived. Consistent with experiments, we find that the resistance of the tail to motion is sensitive to its length. That even small tails are stationary in intact cells is attributed to anchoring to the cytoskeleton. Second, the comparatively low viscosity of some reconstitution media magnifies the effects of diffusion, such that a large gap will develop between the bacterium and its tail if they are unattached. At the viscosities of diluted platelet extracts, steady-state gaps of several bacterium lengths are predicted. Since such gaps are not observed, we conclude that Listeria must be attached to their tails. We consider what purposes such attachments might serve under physiological conditions. The implications for related pathogens and amoeboid locomotion are also discussed.  相似文献   

19.
Purkinje neurons fire spontaneous action potentials at ~50 spikes/sec and generate more than 100 spikes/sec during cerebellum-mediated behaviors. Many voltage-gated channels, including Ca channels, can inactivate and/or facilitate with repeated stimulation, raising the question of how these channels respond to regular, rapid trains of depolarizations. To test whether Ca currents are modulated during firing, we recorded voltage-clamped Ca currents, predominantly carried by P-type Ca channels, from acutely dissociated mouse Purkinje neurons at 30-33{degree sign}C (1 mM Ca). With 0.5 mM intracellular EGTA, 1-second trains of either spontaneous action potential waveforms or brief depolarizing steps at 50 Hz evoked Ca tail currents that were stable, remaining within 5% of the first tail current throughout the train. Higher frequency trains (100 and 200 Hz) elicited a maximal inactivation of  相似文献   

20.
Males of many lizard species have longer tails than similarly-sized females. We hypothesized that this dimorphism is induced by a longer non-autotomous tail part in males, which is associated with the presence of the copulatory organs at the tail base, and presumably reduces the males' ability to escape predation by tail shedding. A compensatory mechanism would be an increase of total tail length in males, to achieve equal lengths of the autotomous tail part in both sexes. A critical prediction of this 'morphological constraint' hypothesis is that the extent of dimorphism in total tail length increases with the magnitude of sexual differences in length of the non-autotomous tail base. We tested this prediction through a comparative study in a small clade of lacertid lizards. Within each of nine species, sexual differences in length of the non-autotomous tail base and in total tail length do not change with body size. All species, except one, exhibit a clear male-biased dimorphism in length of the non-breakable tail base. In all species studied, males have longer tails than females. We used the method of phylogenetically independent contrasts to explore the interspecific relation between dimorphism in length of the tail base and sexual differences in total tail length. Contrary to our prediction, we found no evidence for a positive correlation between the extent of dimorphism in both traits. Thus, constraints imposed by the male copulatory organs on tail autotomy do not seem to be a significant factor in the evolution of dimorphism in tail length in this clade of lacertid lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号