首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of asialo-glycoprotein to isolated Golgi apparatus   总被引:1,自引:0,他引:1  
Membranes of the Golgi apparatus isolated from rat liver were capable of binding 125I-asialo-fetuin in a manner similar to the binding to liver plasma membranes. Although the binding capacity of the Golgi membranes was less than that of plasma membranes, binding was dependent on Ca++ ions and inhibited by α-lactalbumin in both cases. Specific activities of galactosyl and sialyl transferases were about 20 times greater in Golgi than in plasma membranes isolated from the same livers. This dramatic reciprocal relationship between enzyme levels and binding capacities of the two membranous fractions argues against either of these enzymes being the actual binding site.  相似文献   

2.
By immunofluorescence observations with cell couples of cloned murine cytotoxic T lymphocytes (CTL) and target cells, evidence is presented for a rapid reorientation of the microtubule-organizing center (MTOC) and the Golgi apparatus (GA) in the effector cell (but not in the target cell) toward the contact area with the target. The reorientation of the MTOC/GA and the cytotoxic activity of the CTL were inhibited reversibly by nocodazole, a microtubule-disrupting agent. In lectin-formed cell couples of CTL and neuraminidase-treated target cells, the MTOC in essentially all of the CTL was oriented toward the effector-target contact area of a lysable target cell, but was left randomly oriented with a nonlysable target cell. A similar random orientation of the effector-MTOC was also observed in cell couples of cloned natural killer cells and nonlysable targets. These findings indicate that the repositioning of the MTOC and the GA, which is shared by CTL and natural killer cells, is an essential and early event in the onset of the cytolytic mechanism. It is suggested that this reorientation serves the purpose of directing to the bound target cell secretory vesicles derived from the GA that contain cytotoxic substances.  相似文献   

3.
Oxysterol binding protein (OSBP) translocation between Golgi and vesicular/cytoplasmic compartments is affected by conditions that alter cholesterol and sphingomyelin homeostasis, indicating a role in lipid and sterol regulation in this organelle. In this study, we show that OSBP dissociation from the Golgi apparatus was inhibited when LDL cholesterol efflux from lysosomes was blocked in Niemann-Pick C (NPC) or U18666A [3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one]-treated fibroblasts. Dissociation of OSBP from the Golgi apparatus in response to LDL was independent of de novo cholesterol biosynthesis. OSBP did not localize with filipin-stained lysosomal cholesterol, and the NPC defect did not alter OSBP expression or phosphorylation. However, OSBP in the Golgi apparatus was progressively dephosphorylated (as assessed by a molecular mass shift on SDS-PAGE) in U18666A-treated fibroblasts or Chinese hamster ovary cells as a result of combined inhibition of LDL cholesterol transport and de novo cholesterol synthesis. In vivo phosphopeptide mapping and mutagenesis of OSBP was used to identify the cholesterol-sensitive phosphorylation sites at serines 381, 384, and 387 that were responsible for the altered mobility on SDS-PAGE. NPC-1 protein-mediated release of LDL-derived cholesterol and de novo biosynthesis regulates OSBP localization and phosphorylation. This indicates that OSBP responds to or senses altered cellular sterol content and transport.  相似文献   

4.
Purification of oxysterol binding protein from hamster liver cytosol   总被引:7,自引:0,他引:7  
We have purified to apparent homogeneity an oxysterol binding protein from cytosol of hamster livers. This protein, which corresponds to the protein described by Taylor and Kandutsch (Taylor, F. R., and Kandutsch, A. (1985) Chem. Phys. Lipids 38, 187-194), binds oxysterols such as 25-hydroxycholesterol but does not bind cholesterol or steroid hormones in vitro. It may participate in the feedback repression of enzymes of cholesterol biosynthesis and the low density lipoprotein receptor. The protein was purified more than 40,000-fold with a series of ion exchange chromatography steps. The final preparation contained a doublet of peptides with molecular weights (Mr) of 101,000 and 96,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These components formed a complex that migrated on gel filtration with an apparent Mr of 280,000 in the absence or presence of 25-hydroxycholesterol. The amino acid sequence of a tryptic peptide from this protein complex was obtained, and a monoclonal antipeptide antibody was prepared. The antibody stained both the 101,000- and 96,000-Da proteins on immunoblots, suggesting that these two components are closely related and that one may be a modified or proteolyzed form of the other. With the purified protein now available, it should become possible to determine the role, if any, that this protein plays in the regulation of intracellular cholesterol metabolism.  相似文献   

5.
6.
The oxysterol-binding protein-related protein (ORP) family is essential to sterol transfer and sterol-dependent signal transduction in eukaryotes. The crystal structure of one ORP family member, yeast Osh4, is known in apo and sterol-bound states. In the bound state, a 29 residue N-terminal lid region covers the opening of the cholesterol-binding tunnel, preventing cholesterol exchange. Equilibrium and steered molecular dynamics (MD) simulations of Osh4 were carried out to characterize the mechanism of cholesterol exchange. While most of the structural core was stable during the simulations, the lid was partly opened in the apo equilibrium MD simulation. Helix α7, which undergoes the largest conformational change in the crystallized bound and apo states, is conformationally coupled to the opening of the lid. The movement of α7 helps create a docking site for donor or acceptor membranes in the open state. In the steered MD simulations of cholesterol dissociation, we observed complete opening of the lid covering the cholesterol-binding tunnel. Cholesterol was found to exit the binding pocket in a step-wise process involving (i) the breaking of water-mediated hydrogen bonds and van der Waals contacts within the binding pocket, (ii) opening of the lid covering the binding pocket, and (iii) breakage of transient cholesterol contacts with the rim of the pocket and hydrophobic residues on the interior face of the lid.  相似文献   

7.
To explain how resident proteins distribute in peak-like patterns at various positions in the secretory pathway, Glick and co-workers postulated that resident proteins comprise different populations (termed kin populations) and that these compete with each other for entering retrograde transport carriers [Glick et al. (1997) FEBS Lett. 414, 177-181]. Using modelling and computer simulation, they could demonstrate that differences in competitiveness sufficed to generate overlapping but distinct peak-like steady state distributions of the different kin populations across the Golgi stack. In this study, we have tested the robustness of the competition model and find that over-expression or changes in the number of kin populations affect their overall steady state distributions. To increase the robustness of the system, we have introduced a milieu-induced trigger for recycling. This allows for a decrease in the coupling between kin populations permitting both over-expression as well as changes in the number of kin populations. We have also extended the model to include a Golgi to endoplasmic reticulum (ER) recycling pathway and find that only a small amount of resident proteins may recycle at any time without upsetting their observed distributions in the Golgi stack. The biological relevance of a trigger-induced sorting mechanism and ER recycling is discussed.  相似文献   

8.
A novel type of artificial glycoprotein was developed, by using dihydrofolate reductase (DHFR) and methotrexate (MTX) as a protein-ligand pair. Various oligosaccharides linked to MTX were shown to bind tightly with DHFR and afforded oligosaccharide-grafted protein, which could be isolated easily by lectin beads.  相似文献   

9.
Phosphoproteins and protein kinases of the Golgi apparatus membrane   总被引:5,自引:0,他引:5  
Incubation of a highly purified fraction derived from rat liver Golgi apparatus with [gamma-32P]ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on Mg2+, independent of Ca2+, calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on Ca2+ and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known.  相似文献   

10.
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.  相似文献   

11.
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.  相似文献   

12.
Protein kinases are essential for the regulation of cellular growth and metabolism. Since their dysfunction leads to debilitating diseases, they represent key targets for pharmaceutical research. The rational design of kinase inhibitors requires an understanding of the determinants of ligand binding to these proteins. In the present study, a theoretical model based on continuum electrostatics and a surface-area-dependent nonpolar term is used to calculate binding affinities of balanol derivatives, H-series inhibitors, and ATP analogues toward the catalytic subunit of cAMP-dependent protein kinase (cAPK or protein kinase A). The calculations reproduce most of the experimental trends and provide insight into the driving forces responsible for binding. Nonpolar interactions are found to govern protein-ligand affinity. Hydrogen bonds represent a negligible contribution, because hydrogen bond formation in the complex requires the desolvation of the interacting partners. However, the binding affinity is decreased if hydrogen-bonding groups of the ligand remain unsatisfied in the complex. The disposition of hydrogen-bonding groups in the ligand is therefore crucial for binding specificity. These observations should be valuable guides in the design of potent and specific kinase inhibitors.  相似文献   

13.
We have determined, for the first time, the enthalpic contributions to the energy change associated with ligand reorganization (LR) upon the binding of the same ligand to multiple sites within human serum albumine (HSA). Quantum mechanics based density functional theory (DFT) has been used for the LR calculations, which provides much better accuracy than previously used molecular mechanics methods (MM). Our findings show that for some ligands these enthalpic contributions can be attributed to specific structural and conformational changes.  相似文献   

14.
 The endocytic routes of labelled lectins as well as cationic ferritin were studied in cells with a regulated secretion, i.e. pancreatic beta cells, and in constitutively secreting cells, i.e. fibroblasts and HepG2 hepatoma cells, paying particular attention to routes into the Golgi apparatus. Considerable amounts of internalised molecules were taken up into the trans Golgi network (TGN) and into Golgi subcompartments in all three cell types as well as in secretory granules of the pancreatic beta cells. The internalised materials did not pass rapidly the TGN and Golgi stacks, but were still present hours after internalisation, being then particularly concentrated in TGN-elements and in the transmost Golgi cisterna. Endocytosed materials reached forming secretory granules present in the TGN. Further, direct fusion between endocytotic vesicles and mature secretory granules was observed. Golgi subcompartments as well as endocytic TGN containing endocytosed materials were in close apposition to specialised regions of the endoplasmic reticulum. The Golgi apparatus including its parts containing endocytosed materials were transformed into a tubular reticulum upon treatment with the fungal metabolite Brefeldin A. Rarely, internalised material was observed in the lumen of the endoplasmic reticulum, thus providing evidence for an endocytic plasma membrane to endoplasmic reticulum route. Accepted: 9 March 1998  相似文献   

15.
Although the rotamase activity of the FK506 binding protein is inhibited by ligand binding, it is hypothesized that the ligand/protein complex itself may be responsible for the immunosuppressive effects of FK506. We have therefore examined the structure of the FK506 binding protein in the presence of an analog of FK506 (FK520) by a combination of fluorescence, CD, FTIR and calorimetry. While only small changes in the overall structure of the protein may be induced by ligand, a large change in thermal stability of the binding protein is observed.  相似文献   

16.
A mixture of UDP-N-acetylglucosamine labeled with different radioisotopes in the uridine and glucosamine was used to show that the intact sugar nucleotide was translocated across the membrane of vesicles derived from rat liver rough endoplasmic reticulum (RER) and Golgi apparatus. Translocation was dependent on temperature, saturable at high concentrations of sugar nucleotide, and inhibited by treatment of vesicles with proteases, suggesting protein carrier mediated transport. Translocation of UDP-GlcNAc by RER-derived vesicles appeared to be specific since these vesicles were unable to translocate UDP-galactose, in contrast to those derived from the Golgi apparatus. Preliminary results suggest that the mechanism of UDP-GlcNAc translocation into RER-derived vesicles is via a coupled exchange with lumenal nucleoside monophosphate. This is similar to the recently postulated mechanism for translocation of sugar nucleotides into vesicles derived from the Golgi apparatus.  相似文献   

17.
Binding of 6-aminohexanoic acid to the AH-site, a weak lysine binding site in Glu-plasminogen, alters the conformation of the molecule. The kinetics of the binding and the accompanying conformational change are investigated at pH 7.8, 25 degrees C. Changes of intrinsic protein fluorescence were measured as a function of time after rapid mixing in a stopped-flow apparatus. The results reflect a two-step reaction mechanism: Rapid association of Glu-plasminogen and 6-aminohexanoic acid (K1 = 44 mM) followed by the conformational change (k2 = 69 s-1 and k-2 = 3 s-1) with an overall dissociation constant Kd = 2.0 mM. Thus the conformational change is rather fast, t12 = 0.01 s. Its importance for the rates of Glu-plasminogen activation reactions is discussed.  相似文献   

18.
Multivalent ligand binding by serum mannose-binding protein.   总被引:6,自引:0,他引:6  
The serum-type mannose-binding protein (MBP) is a defense molecule that has carbohydrate-dependent bactericidal effects. It shares with mammalian and chicken hepatic lectins similarity in the primary structure of the carbohydrate-recognition domain, as well as the ligand-binding mode: a high affinity (KD approximately nM) is generated by clustering of approximately 30 terminal target sugar residues on a macromolecule, such as bovine serum albumin, although the individual monosaccharides have low affinity (KD 0.1-1 mM). On the other hand, MBP does not manifest any significant affinity enhancement toward small, di- and trivalent ligands, in contrast to the hepatic lectins whose affinity toward divalent ligands of comparable structures increased from 100- to 1000-fold. Such differences may be explained on the basis of different subunit organization between the hepatic lectins and MBP.  相似文献   

19.
Targeting of proteins to the Golgi apparatus   总被引:8,自引:0,他引:8  
 The proteins that reside in the Golgi carry out functions associated with post-translational modifications, including glycosylation and proteolytic processing, membrane transport, recycling of endoplasmic reticulum proteins and maintenance of the structural organisation of the organelle itself. The latter includes Golgi stacking, interconnections between stacks and the microtubule-dependent positioning of the organelle within the cell. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recycling trans-Golgi network (TGN) proteins, peripheral membrane proteins and receptors. Considerable effort has been directed at understanding the basis of the localisation of Golgi glycosyltransferases and recycling TGN proteins; in both cases there is increasing evidence that multiple signals may be involved in their specific localisation. A number of models for the Golgi retention of glycosyltransferases have been proposed including oligomerisation, lipid-mediated sorting and intra-Golgi retrograde transport. More information is required to determine the contribution of each of these potential mechanisms in the targeting of different glycosyltransferases. Future work is also likely to focus on the relationship between the localisation of resident Golgi proteins and the maintenance of Golgi structure. Accepted: 15 October 1997  相似文献   

20.
Targeting of proteins to the Golgi apparatus   总被引:5,自引:0,他引:5  
The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recyclingtrans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号