首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
Bis(3,5-dibromosalicyl) fumarate was used to crosslink hemoglobin both in the oxy and deoxy states. This double headed diaspirin was known to crosslink oxy Hb A selectively between Lys 82 beta 1 and Lys 82 beta 2 (Walder, J. A., et al. (1979) Biochemistry 18, 4265) and deoxy Hb A between Lys 99 alpha 1 and Lys 99 alpha 2 (Chatterjee R. Y., et al. (1986) J. Biol. Chem. 261, 9929). The autoxidation at 37 degrees C of oxy alpha 99 crosslinked hemoglobin was found to be 1.8 times as fast as that of Hb A while that of the oxy beta 82 crosslinked hemoglobin was only 1.2 times as fast. After 5 hours the formation of methemoglobin in the alpha crosslinked Hb A is 21.3% compared to 10.8% in beta crosslinked Hb A and 6.4% in Hb A. These results may effect the proposed use of alpha 99 crosslinked hemoglobin as a blood substitute by demonstrating the need for protection from autoxidation during storage.  相似文献   

2.
The crystal structure of a high oxygen affinity species of hemoglobin, bar-headed goose hemoglobin in deoxy form, has been determined to a resolution of 2.8 A. The R and R(free) factor of the model are 0.197 and 0.243, respectively. The structure reported here is a special deoxy state of hemoglobin and indicates the differences in allosteric mechanisms between the goose and human hemoglobins. The quaternary structure of the goose deoxy hemoglobin shows obvious differences from that of human deoxy hemoglobin. The rotation angle of one alphabeta dimer relative to its partner in a tetramer molecule from the goose oxy to deoxy hemoglobin is only 4.6 degrees, and the translation is only 0.3 A, which are much smaller than those in human hemoglobin. In the alpha(1)beta(2) switch region of the goose deoxy hemoglobin, the imidazole ring of His beta(2)97 does not span the side-chain of Thr alpha(1)41 relative to the oxy hemoglobin as in human hemoglobin. And the tertiary structure changes of heme pocket and FG corner are also smaller than that in human hemoglobin. A unique mutation among avian and mammalian Hbs of alpha119 from proline to alanine at the alpha(1)beta(1 )interface in bar-headed goose hemoglobin brings a gap between Ala alpha119 and Leu beta55, the minimum distance between the two residues is 4.66 A. At the entrance to the central cavity around the molecular dyad, some residues of two beta chains form a positively charged groove where the inositol pentaphosphate binds to the hemoglobin. The His beta146 is at the inositol pentaphosphate binding site and the salt-bridge between His beta146 and Asp beta94 does not exist in the deoxy hemoglobin, which brings the weak chloride-independent Bohr effect to bar-headed goose hemoglobin.  相似文献   

3.
By introducing an additional H-bond in the alpha(1)beta(2) subunit interface or altering the charge properties of the amino acid residues in the alpha(1)beta(1) subunit interface of the hemoglobin molecule, we have designed and expressed recombinant hemoglobins (rHbs) with low oxygen affinity and high cooperativity. Oxygen-binding measurements of these rHbs under various experimental conditions show interesting properties in response to pH (Bohr effect) and allosteric effectors. Proton nuclear magnetic resonance studies show that these rHbs can switch from the oxy (or CO) quaternary structure (R) to the deoxy quaternary structure (T) without changing their ligation states upon addition of an allosteric effector, inositol hexaphosphate, and/or reduction of the ambient temperature. These results indicate that if we can provide extra stability to the T state of the hemoglobin molecule without perturbing its R state, we can produce hemoglobins with low oxygen affinity and high cooperativity. Some of these rHbs are also quite stable against autoxidation compared to many of the known abnormal hemoglobins with altered oxygen affinity and cooperativity. These results have provided new insights into the structure-function relationship in hemoglobin.  相似文献   

4.
CC individuals, homozygous for the expression of beta(C)-globin, and SC individuals expressing both beta(S) and beta(C)-globins, are known to form intraerythrocytic oxy hemoglobin tetragonal crystals with pathophysiologies specific to the phenotype. To date, the question remains as to why HbC forms in vivo crystals in the oxy state and not in the deoxy state. Our first approach is to study HbC crystallization in vitro, under non-physiological conditions. We present here a comparison of deoxy and oxy HbC crystal formation induced under conditions of concentrated phosphate buffer (2g% Hb, 1. 8M potassium phosphate buffer) and viewed by differential interference contrast microscopy. Oxy HbC formed isotropic amorphous aggregates with subsequent tetragonal crystal formation. Also observed, but less numerous, were twisted, macro-ribbons that appeared to evolve into crystals. Deoxy HbC also formed aggregates and twisted macro-ribbon forms similar to those seen in the oxy liganded state. However, in contrast to oxy HbC, deoxy HbC favored the formation of a greater morphologic variety of aggregates including polymeric unbranched fibers in radial arrays with dense centers, with infrequent crystal formation in close spatial relation to both the radial arrays and macroribbons. Unlike the oxy (R-state) tetragonal crystal, deoxy HbC formed flat, hexagonal crystals. These results suggest: (1) the Lys substitution at beta6 evokes a crystallization process dependent upon ligand state conformation [i. e., the R (oxy) or T (deoxy) allosteric conformation]; and (2) the oxy ligand state is thermodynamically driven to a limited number of aggregation pathways with a high propensity to form the tetragonal crystal structure. This is in contrast to the deoxy form of HbC that energetically equally favors multiple pathways of aggregation, not all of which might culminate in crystal formation.  相似文献   

5.
An allosteric modulator of oxygen release in human erythrocytes is 2,3-diphosphoglycerate, but bovine erythrocytes apparently utilize chloride for this purpose since they contain little, if any, 2,3-diphosphoglycerate. In order to identify the sites to which these anions bind, the site-specific acetylating agent, methyl acetyl phosphate, has been employed to compete with these allosteric modulators and to mimic their effects on hemoglobin function. With human hemoglobin A, methyl acetyl phosphate competes with 2,3-diphosphoglycerate and acetylates only Val-1(beta), Lys-82(beta), and Lys-144(beta) within or near the cleft that binds this organic phosphate (Ueno, H., Pospischil, M. A., Manning, J. M., and Kluger, R. (1986) Arch Biochem. Biophys. 244, 795). With bovine hemoglobin, the acetylation is competitive with chloride ion. The sites of acetylation in oxy bovine hemoglobin are Met-1(beta) and Lys-81(beta) and for deoxy bovine hemoglobin, they are Val-1(alpha) and Lys-81(beta). Thus, these sites are expected to be involved in the binding of chloride to bovine hemoglobin. Treatment of either human or bovine hemoglobins with methyl acetyl phosphate under anaerobic conditions leads to a lowering of their oxygen affinity and hence the covalent modifier has the same effect on hemoglobin function as the non-covalent regulators, 2,3-diphosphoglycerate and chloride. The Hill's coefficient of hemoglobin is unaffected by treatment with methyl acetyl phosphate. Under aerobic conditions, specifically acetylated bovine hemoglobin also has a lowered oxygen affinity, and human hemoglobin A shows a slight change in its oxygen affinity. In general, bovine hemoglobin is more responsive than human hemoglobin to both chloride and methyl acetyl phosphate; the latter agent results in a permanent covalent labeling of the protein. Therefore, the results support the idea that methyl acetyl phosphate may be a useful probe for deciphering the sites of binding of anions to proteins.  相似文献   

6.
To investigate the mode of interactions between heme metal, bound oxygen and the distal residue at the E7 site, we have measured accurate oxygen equilibrium curves, oxygen binding relaxations following temperature-jump, and electron paramagnetic resonance spectra of natural and cobalt-substituted opossum hemoglobin, which has glutamine and histidine at the E7 site of the α chain and the β chain, respectively, and compared them with those of natural and cobalt-substituted human hemoglobin, which has histidine at the E7 site of both the α and β chains.Natural opossum hemoglobin has a lower oxygen affinity, slightly smaller and pH-dependent co-operativity, a somewhat greater Bohr effect, and a smaller effect of organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate on oxygen affinity as compared to natural human hemoglobin. Upon substitution of cobalt for iron, these oxygenation characteristics of opossum hemoglobin relative to those of human hemoglobin were preserved well. The behavior of the intrinsic oxygen association constants pertaining to the four oxygenation steps (i.e. the Adair constants) upon addition of the organic phosphates or pH changes indicates that the allosteric equilibrium in opossum hemoglobin is biased towards the T state as compared with that in human hemoglobin, and that the oxygen affinity of the R structure is lower for opossum hemoglobin than for human hemoglobin. The temperature-jump kinetic data indicate that the lower oxygen affinity of opossum cobalt-hemoglobin in comparison with that of human cobalt-hemoglobin can be ascribed to a decreased oxygen association rate constant. The electron paramagnetic resonance experiments on oxy and deoxy opossum and human cobalt-hemoglobins in buffered H2O and 2H2O, including their photolysed products at a low temperature, provided the following information. The cobaltous ion of the α subunits of deoxy opossum cobalt-hemoglobin is in an environment that is similar to that for cobaltous ions of deoxy human cobalt-hemoglobin in the T state. The hydrogen bond between the bound oxygen and the residue at E7, which has been shown to exist in oxy human cobalt-hemoglobin and oxy sperm whale cobalt-myoglobin, is absent or, at least, significantly altered in the α subunits of oxy opossum cobalt-hemoglobin, probably resulting in a lower oxygen affinity. Interference by isoleucine at E11α with an oxygen molecule is suggested as an explanation for the lowered affinity of opossum iron-hemoglobin. However, no straightforward structural explanation is available for the lower oxygen affinity of the R structure and the allosteric equilibrium biased towards the T state in opossum iron-hemoglobin.  相似文献   

7.
We have developed a rapid and useful method for purification of valency hybrid hemoglobins (alpha 2+ beta 2 and alpha 2 beta 2+: + denotes ferric heme) from a hemoglobin solution oxidized partially with ferricyanide by preparative high-performance liquid chromatography. This method does not involve the separation of hemoglobin subunits and the reconstitution of ferric and partner ferrous subunits. Using the valency hybrid hemoglobins thus prepared, the effect of the ferric spin state on the alpha 1 beta 2 subunit boundary structure was investigated by measuring the ultraviolet difference absorption spectra between the deoxy and the oxy valency hybrids associated with various ferric ligands (fluoride, aquo, azide and cyanide). All derivatives of both alpha 2+ beta 2 and alpha 2 beta 2+ showed the difference spectra characteristic of R-T quaternary structural transition. However, the magnitude of the difference spectral peak observed near 288 nm was larger for high-spin derivatives than for low-spin ones. The magnitude of the peak for the valency hybrid hemoglobin was closely correlated with the difference in the free energy of oxygen binding between the R and T states. Since the R state of high-spin hybrids is considered to be identical to that of low-spin hybrids, we concluded from these results that the alpha 1 beta 2 subunit boundary structure plays an important role in regulating the oxygen affinity of deoxy T state.  相似文献   

8.
Hemoglobin New Mexico beta 100 Pro----Arg was found in a 4-year-old black male and represents a new mutation. The propositus is also heterozygous for Hb S. The variant shows high oxygen affinity, reduced cooperatively, and a lowered alkaline Bohr effect. Addition of allosteric effectors leads to improved cooperativity and a Bohr effect that is similar to that of Hb A. The high percentage of the variant (53.5%) and its increased oxygen affinity result in erythrocytosis in this patient. The hemoglobin level and packed cell volume values are elevated. In spite of these factors the patient appears healthy and shows no discomfort. The altered oxygen-linked properties of this variant can be related to the fact that the substituted residue contributes to the alpha 2 beta 1/alpha 1 beta 2 subunit interface, an area that is critical not only to the allosteric transitions between the oxy and deoxy states but also to stabilizing the hemoglobin tetrameer.  相似文献   

9.
C H Tsai  T J Shen  N T Ho  C Ho 《Biochemistry》1999,38(27):8751-8761
Using our Escherichia coli expression system, we have produced five mutant recombinant (r) hemoglobins (Hbs): r Hb (alpha V96 W), r Hb Presbyterian (beta N108K), r Hb Yoshizuka (beta N108D), r Hb (alpha V96W, beta N108K), and r Hb (alpha V96W, beta N108D). These r Hbs allow us to investigate the effect on the structure-function relationship of Hb of replacing beta 108Asn by either a positively charged Lys or a negatively charged Asp as well as the effect of replacing alpha 96Val by a bulky, nonpolar Trp. We have conducted oxygen-binding studies to investigate the effect of several allosteric effectors on the oxygenation properties and the Bohr effects of these r Hbs. The oxygen affinity of these mutants is lower than that of human normal adult hemoglobin (Hb A) under various experimental conditions. The oxygen affinity of r Hb Yoshizuka is insensitive to changes in chloride concentration, whereas the oxygen affinity of r Hb Presbyterian exhibits a pronounced chloride effect. r Hb Presbyterian has the largest Bohr effect, followed by Hb A, r Hb (alpha V96W), and r Hb Yoshizuka. Thus, the amino acid substitution in the central cavity that increases the net positive charge enhances the Bohr effect. Proton nuclear magnetic resonance studies demonstrate that these r Hbs can switch from the R quaternary structure to the T quaternary structure without changing their ligation states upon the addition of an allosteric effector, inositol hexaphosphate, and/or by reducing the temperature. r Hb (alpha V96W, beta N108K), which has the lowest oxygen affinity among the hemoglobins studied, has the greatest tendency to switch to the T quaternary structure. The following conclusions can be derived from our results: First, if we can stabilize the deoxy (T) quaternary structure of a hemoglobin molecule without perturbing its oxy (R) quaternary structure, we will have a hemoglobin with low oxygen affinity and high cooperativity. Second, an alteration of the charge distribution by amino acid substitutions in the alpha 1 beta 1 subunit interface and in the central cavity of the hemoglobin molecule can influence the Bohr effect. Third, an amino acid substitution in the alpha 1 beta 1 subunit interface can affect both the oxygen affinity and cooperativity of the oxygenation process. There is communication between the alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces during the oxygenation process. Fourth, there is considerable cooperativity in the oxygenation process in the T-state of the hemoglobin molecule.  相似文献   

10.
11.
The abnormal human hemoglobin Malm? (beta97FG4 His leads to Gln) has been studied and its properties are compared with those of normal adult hemoglobin A. The data presented here show that the ring-current shifted proton resonances of both HbCO and HbO2 Malm? are very different from the corresponding forms of Hb A. The hyperfine shifted proton resonances of deoxy-Hb Malm? do not differ drastically from those of deoxy-Hb A. This result, together with the finding that the exchangeable proton resonances of the deoxy form of the two hemoglobins are similar, suggests that unliganded Hb Malm? can assume a deoxy-like quaternary structure both in the absence and presence of organic phosphates We have also compared the properties of Hb Malm? with those of Hb Chesapeake (alpha92FG4 Arg leads to Leu). This allows us to study the properties of two abnormal human hemoglobins with mutations at homologous positions of the alpha and beta chains in the three-dimenstional structure of the hemoglobin molecule. Our present results suggest that the mutaion at betaFG4 has its greatest effect on the teritiary structure of the heme pocket of the liganded forms of the hemoglobin while the mutation at alphaFG4 alters the deoxy structure of the hemoglogin molecule but does not alter the teriary structure of the heme pockets of the liganded form of the hemoglobin molecule. Both hemoglobins undergo a transition from the deoxy (T) to the oxy (R) quaternary structure upon ligation. The abnormally high oxygen affinities and low cooperativities of these two hemoglobins must therefore be due to either the structural differences which we have observed and/or to an altered transition between the T and R structures.  相似文献   

12.
Analysis of the tertiary structural alterations in hemoglobin induced by ligand binding demonstrates that an allosteric core composed of the heme, histidine F8, the FG corner and part of the F-helix plays an essential role in co-operativity. This conclusion is based on structural and spectroscopic data and theoretical studies of hemoglobin chains. The methodology employed in the calculations is presented with details of the empirical energy function. Energy minimized structures of the unliganded hemoglobin chains, which serve as reference systems for the analysis, are described. To determine the structural changes induced by ligand binding, the effects of FeN bond shortening and of heme translation and tilting perturbations are examined. Energy minimization in the presence of the perturbations serves to provide information concerning the globin structural modifications produced by them. The validity of the results is supported by comparisons with the X-ray data of Anderson, Pulsinelli, Baldwin and Chothia on tertiary changes in the hemoglobin subunits.Internal to the allosteric core, there appear to be two stable positions for its elements: one of these corresponds to the liganded and the other to the unliganded species. The unliganded geometry fits without strain into the deoxy tetramer, while the liganded one fits without strain into the oxy tetramer. On ligation of a subunit in the deoxy tetramer, the structural changes within the allosteric core are in the direction of those found in going from the unliganded deoxy to the liganded oxy system, although they are reduced by the presence of constraints due to the other subunits in the deoxy tetramer. In addition, the quaternary constraints in the deoxy tetramer prevent the large overall displacement of the allosteric core that occurs in the transition to the liganded oxy tetramer. The coupling between the changes internal to the allosteric core, produced on ligation and the overall displacement of the core that accompanies the quaternary transition, is an essential element of the co-operative mechanism. As shown in previous work (Gelin & Karplus, 1977), the proximal histidine serves as the link between the position of the heme and the F-helix; the asymmetric orientation of the histidine in the deoxy structure, coupled with contributions from other heme-protein interactions, appears to initiate the tertiary structural changes induced by ligand binding. The reduced oxygen affinity of hemoglobin results not from tension on the heme in the unliganded structure (there is none) but instead from strain in the liganded subunit of the tetramer within the deoxy quaternary structure. Further, the changes in the allosteric core provide a relatively localized reaction path for transmitting information concerning ligand binding from the heme group to the surface of the subunit; particularly in the α-chain, the residue Val FG5 appears to play an important role in the reaction path.The present analysis has important implications for realistic statistical thermodynamic models of hemoglobin co-operativity. It suggests that the previously formulated model (Szabo & Karplus, 1972) should be generalized by the introduction of two different subunit tertiary structures in the deoxy and in the oxy tetramer; they would be associated with the unliganded and the liganded allosteric core, respectively, and would take account of steric constraints that reduce the ligand affinity of the deoxy tetramer.  相似文献   

13.
Cobalt hemoglobin Zürich (alpha 2 beta 263His leads to Arg) has been successfully reconstituted from the apohemoglobin Zürich and cobaltous protoporphyrin IX. The oxygen affinity of cobalt hemoglobin Zurich, as well as that of iron hemoglobin Zürich, were measured in the absence and presence of organic phosphate and Cl-. The overall oxygen affinity of cobalt hemoglobin Zürich was found to be higher and the cooperativity as measured by the n value was smaller than those of cobalt hemoglobin A. Organic phosphate and Cl- affect the oxygen equilibrium properties of cobalt hemoglobin Zürich in a manner similar to that of cobalt hemoglobin A, but to a lesser extant than cobalt hemoglobin A. The EPR spectrum of oxy cobalt hemoglobin Zürich is less sensitive to the replacement of the buffer system from H2O to 2H2O, indicating that the hydrogen bond between the distal amino acid residue and the bound oxygen is not formed in the abnormal beta subunits. The deoxy EPR spectrum of cobalt hemoglobin Zürich is similar to that of deoxy cobalt hemoglobin A, suggesting that the deoxy cobalt hemoglobin Zürich is predominantly in the deoxy quaternary structure (T state).  相似文献   

14.
High-resolution proton nuclear magnetic resonance studies of hemoglobins Providence-Asn (beta82EF6 Lys replaced by Asn) and Providence-Asp (beta82EF6 Lys replaced by Asp) show that different amino acid substitutions at the same position in the hemoglobin molecule have different effects on the structure of the protein molecule. Hemoglobin Providence-Asp appears to be in a low-affinity tertiary structure in both the deoxy and carbonmonoxy forms. Deoxyhemoglobin Providence-Asn has its beta heme resonance shifted downfield slightly from its position in normal adult hemoglobin; however, the tertiary structures of the heme pocket of hemoglobins A and Providence-Asn are very similar when both proteins are in the carbonmonoxy form. These results are consistent with the oxygen equilibrium measurements of Bonaventura, J., et al. [(1976) J. Biol. Chem. 251, 7563] which show that both Hb Providence-Asn and Hb Providence-Asp have oxygen affinities lower than normal adult hemoglobin, with Hb Providence-Asp having the lowest. Our studies of the effects of sodium chloride on the hyperfine shifted proton resonances of deoxyhemoglobins A, Providence-Asn, and Providence-Asp indicate that the beta82EF6 lysine is probably one, but not the only binding site for chloride ions.  相似文献   

15.
A recombinant (r) mutant hemoglobin (Hb) with Asn-102(beta) replaced by an Ala (N102A(beta)) has been prepared by PCR amplification of a mutagenic DNA fragment and expression of the recombinant protein in yeast. The side chain of Asn-102(beta) is part of an important region of the alpha 1 beta 2 interface that undergoes large structural changes in the transition between the deoxy and oxy conformations. Three natural mutant Hbs with neutral substitutions of Thr, Ser, or Tyr at this site have low oxygen affinities because a hydrogen bond between Asn-102(beta) and Asp-94(alpha) in normal HbA was considered to be absent in these mutants, thereby destabilizing the oxy conformation in favor of the deoxy conformation. This proposal has been tested by expression of an rHb containing alanine at position 102(beta); alanine was chosen because its methyl side chain cannot participate in hydrogen bond formation, yet it is small enough not to disrupt the subunit interface. The nature of the desired replacement was established by sequencing the entire mutated beta-globin gene as well as the tryptic peptide containing the substitution. Further characterization by SDS-PAGE, isoelectric focusing, HPLC analysis, mass spectrometry, amino acid analysis, and sequencing of the mutant tryptic peptide confirmed the purity of the rHb. Its oxygen binding curve (2.4 mM in heme) in the absence of chloride showed that it had a very low oxygen affinity with a P50 of 42 mm Hg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction of dromedary hemoglobin with various solvent components [2-(p-chlorophenoxy)-2-methylpropionic acid (CFA), 2,3-bisphospho-D-glycerate (glycerate-2,3-P2) and chloride] has been studied. 1. CFA greatly lowers the oxygen affinity of dromedary hemoglobin. 2. The oxygen-linked CFA binding sites are probably located in the deoxy derivative at the alpha cleft, while in the oxy form and in the presence of two other effectors (glycerate-2,3-P2 and chloride) additional, structurally and possibly functionally relevant binding site(s) should be considered. 3. Both CFA and glycerate-2,3-P2 stabilize the deoxy-like tertiary structure in the oxy derivative. 4. Chloride appears to be fundamental to obtain quaternary structural changes. 5. Interaction energy, retained in the protein when the three ligands (CFA, glycerate-2,3-P2 and chloride) are bound to the oxy form, favours intermediates not stable if only one or two allosteric effector(s) is (are) present on the protein. 6. The oxygen affinity appears to be related to both tertiary and quaternary structural changes, while cooperatively is largely invariant with solvent conditions. In conclusion, the functional properties of dromedary hemoglobin do not depend in any simple way on the variety of stabilized conformations.  相似文献   

17.
The Fe site structure in the recombinant wild-type and T721 mutant of the cooperative homodimeric hemoglobin (HbI) of the mollusc Scapharca itnaequivalvis has been investigated by measuring the Fe K-edge X-ray absorption near edge structure (XANES) spectra of their oxy, deoxy and carbonmonoxy derivatives, and the cryogenic photoproducts of the carbonmonoxy derivatives at T = 12 K. According to our results, the Fe site geometry in T72I HbI-CO is quite similar to that of human carbonmonoxy hemoglobin (HbA-CO), while in native HbI-CO it seems intermediate between that of HbA-CO and sperm whale MbCO. The XANES spectra of oxy and deoxy derivatives are similar to the homologous spectra of human HbA, except for T72I HbI, for which the absorption edge is blue-shifted (about + 1 eV) towards the spectrum of the oxy form. XANES spectra of the cryogenic photoproducts of HbA-CO (HbA*), HbI-CO (HbI*) and mutant HbI-CO (T72I HbI*) were acquired under continuous illumination at 12 K. The Fe-heme structures of the three photoproducts are similar; however, while in the case of HbA* and HbI* the data indicate incomplete structural relaxation of the Fe-heme towards its deoxy-like (T) form, the relaxation in T72I HbI* is almost completely towards the proposed "high affinity" Fe-heme structure of T72I HbI. This evidence suggests that minor tertiary restraints affect the Fe-heme dynamics of T72I HbI, corresponding to a reduction of the energy necessary for the T --> R structural transition, which can contribute to the observed dramatic enhancement in oxygen affinity of this hemoprotein, and the decreased cooperativity.  相似文献   

18.
Previous crystallographic studies have shown that human hemoglobin A can adopt two stable quaternary structures, one for deoxyhemoglobin (the T-state) and one for liganded hemoglobin (the R-state). In this paper we report our finding of a second quaternary structure (the R2-state) for liganded hemoglobin A. The magnitudes of the spatial differences between the R- and R2-states are as large as those between the R- and T-states. Of particular interest are the structural changes that occur as a result of R-T and R-R2 transitions at the so-called "switch" region of the critical alpha 1 beta 2 interface. In the R-state, His-97 beta 2 is positioned between Thr-38 alpha 1 and Thr-41 alpha 1, whereas in transition to the T-state His 97 beta 2 must "jump" a turn in the alpha 1 C helix to form nonpolar contacts with Thr-41 alpha 1 and Pro-44 alpha 1. This facet of the R-T transition presents a major steric barrier to the quaternary structure change. In the R2-state, His-97 beta 2 simply rotates away from threonines 38 alpha 1 and 41 alpha 1, breaking contact with these residues and allowing water access to the center of the alpha 1 beta 2 interface. With the switch region in an open position in the R2-state, His-97 beta 2 should be able to move by Thr-41 alpha 1 and make the transition to the T-state with a steric barrier that is less than that for the R-T transition. Thus the R2-state may function as a stable intermediate along a R-R2-T pathway. The T-, R-, and R2-states must coexist in solution. That is, the fact that these states can be crystallized implies that they are all energetically accessible structures. What remains to be determined are the T-to-R, T-to-R2, and R-to-R2 equilibrium constants for hemoglobin under various solution conditions and ligation states. Although this may prove to be difficult, we discuss previously published results which indicate that low concentrations of inorganic anions or low pH may favor the R2-state and at least one alpha 1 beta 2 interface mutation stabilizes a quaternary structure that is very similar to the R2-state.  相似文献   

19.
We investigated oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between lysine-82 beta 1 and lysine-82 beta 2 by a fumaryl group, which is prepared by reaction of the CO form with bis(3,5-dibromosalicyl) fumarate. The cross-linked hemoglobin preparation isolated by the previous purification method, namely, gel filtration in the presence of 1 M MgCl2 followed by ion-exchange chromatography, was found to be contaminated with about 20% of an electrophoretically silent impurity that shows remarkably high affinity for oxygen. This impurity was separated from the desired cross-linked hemoglobin by a newly developed purification method, which utilizes a difference between the authentic hemoglobin and the impurity in reactivity of the sulfhydryl groups of cysteine-93 beta toward N-ethylmaleimide under a deoxygenated condition. After this purification procedure, the oxygen equilibrium properties of purified cross-linked hemoglobin in the absence of organic phosphate became very similar to those of unmodified hemoglobin with respect to oxygen affinity, cooperativity, and the alkaline Bohr effect. The functional similarity between the cross-linked hemoglobin and unmodified hemoglobin allows us to utilize this cross-linking for preparing asymmetric hybrid hemoglobin tetramers, which are particularly useful as intermediately liganded models. Previous studies on this type of cross-linked hemoglobin should be subject to reexamination due to the considerable amount of the impurity.  相似文献   

20.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号