首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE RENEWAL OF ROD AND CONE OUTER SEGMENTS IN THE RHESUS MONKEY   总被引:1,自引:0,他引:1       下载免费PDF全文
The renewal of retinal rod and cone outer segments has been studied by radioautography in rhesus monkeys examined 2 and 4 days after injection of leucine-3H. The cell outer segment consists of a stack of photosensitive, membranous discs. In both rods and cones some of the newly formed (radioactive) protein became distributed throughout the outer segment. Furthermore, in rods (but not in cones), there was a transverse band of concentrated radioactive protein slightly above the outer segment base 2 days after injection. This was due to the formation of new discs, into which labeled protein had been incorporated. At 4 days, these radioactive discs were located farther from the outer segment base. Repeated assembly of new discs had displaced them away from the basal assembly site and along the outer segment. Measurements of the displacement rate indicated that each retinal rod produces 80–90 discs per day, and that the entire complement of outer segment discs is replaced every 9–13 days. To compensate for the continual formation of new discs, groups of old discs are intermittently shed from the apical end of the cell and phagocytized by the pigment epithelium. Each pigment epithelial cell engulfs and destroys about 2000–4000 rod outer segment discs daily. The similarity between visual cells in the rhesus monkey and those in man suggests that the same renewal processes occur in the human retina.  相似文献   

2.
The developing chick retina from stages 39-45 has been examined by biochemical and electron microscope techniques. The levels of rhodopsin contained in the maturing chick retina were evaluated by detergent extraction and correlated with rod outer segment formation. It was found that the appearance of rhodopsin in significant levels preceded outer segment formation by at least 2 days, thus implying that rhodopsin is synthesized in the receptor cell inner segment and translocated to the outer limb when disk membrane biogenesis occurs. The level of rhodopsin continues to rise as the rod outer segment develops. Development of both rods and cones originates and proceeds most rapidly in the fundus or central region and proceeds toward the periphery. In general, rod outer segments were noted to develop far more rapidly than cone outer segments.  相似文献   

3.
Visual cell outer segment renewal was studied in eyes of mutant Royal College of Surgeons (RCS) and Sprague-Dawley (control) rats by a combination of microscopy and radioautography with the light and electron microscopes. RCS and control rats were injected with amino acids-3H at 11 days of age. Radioactive rod outer segment discs were assembled at the outer segment base from radioactive proteins synthesized in the rod inner segments. In controls, all radioactive discs assembled at 11 days of age were displaced the length of the outer segments, removed from outer segment tips, and phagocytized by the pigment epithelium by 8 days after injection. In the RCS rats, disc assembly and displacement resembled controls for the first 3 days after injection. However, as disc assembly continued for some time thereafter, a layer of labeled, disorganized, lamellar debris accumulated between the outer segment tips and the pigment epithelium. The buildup of debris was accompanied by visual cell death. At no time during the study was there evidence for phagocytic activity by the pigment epithelium. 61 days after injection, the layer of debris was the only heavily radioactive component in the retina. In the retina of RCS rats, the outer segment renewal mechanism malfunctions because the pigment epithelium does not fulfill its normal phagocytic role. The end result is visual cell death and blindness.  相似文献   

4.
The renewal of glycerol in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with [2-3H]glycerol. Assay of chloroform:methanol extracts showed that the labeled precursor was used mainly in lipid synthesis, although there was also some utilization in the formation of protein. Radioactive glycerol was initially concentrated in the myoid portion of rods and cones, indicating that this is the site of phospholipid synthesis in visual cells. The glycogen bodies (paraboloids) of accessory cones were also heavily labeled, suggesting the diversion of some glycerol into glycogenic pathways. In the pigment epithelium, only the oil droplets became significantly radioactive. The outer plexiform layer (which contains the visual cell synaptic bodies) and the cone oil droplets gradually accumulated considerable amounts of labeled material. Within 1–4 h, labeled molecules began to appear in the visual cell outer segments, evidently having been transported there from the myoid portion of the inner segment. Most of these were phospholipid molecules which became distributed throughout the outer segments, presumably replacing comparable constituents in existing membranes. In rods only, there was also an aggregation of labeled material at the base of the outer segment due to membrane biogenesis. These highly radioactive membranes, containing labeled molecules of lipid and protein, were subsequently displaced along the rod outer segments due to repeated membrane assembly at the base. The distribution of radioactivity supported the conclusion that membrane renewal by molecular replacement is more rapid for lipid than it is for protein.  相似文献   

5.
Metabolism of phosphatidylethanolamine in the frog retina   总被引:1,自引:0,他引:1  
The synthesis and the turnover of phosphatidylethanolamine in frog retinal rod outer segments and microsomes were studied by monitoring the incorporation of five radioactive precursors: 32PO4, 33PO4 [3H]glycerol, [3H]serine, and [3H]ethanolamine. 1. Labeled serine was actively incorporated into phosphatidylethanolamine. The kinetics of the labeling patterns in both microsomes and rod outer segments was consistent with formation via decarboxylation of phosphatidylserine. 2. Ethanolamine was found to be an ineffective precursor of phosphatidylethanolamine, suggesting that the major pathway for phosphatidylethanolamine synthesis in the retina is via the decarboxylation reaction. 3. An active methylation of phosphatidylethanolamine to phosphatidylcholine was observed in both retinal microsomes and rod outer segments. 4. The kinetics of labeling of phosphatidylethanolamine in the rod outer segments was different for the various isotopic precursors, and was found to depend on the relative turnover times of the precursor pools. Glycerol was the only precursor that gave a true pulse of radioactivity. 5. The specific activity of phosphatidylethanolamine derived from labeled glycerol declined exponentially, demonstrating that the labeled lipid was diffusely distributed throughout the rod outer segments. The half-life of phosphatidylethanolamine in the rod outer segments was determined to be 18 days. Comparison of this value to the turnover time of rod outer segment integral proteins revealed that rod outer segment lipid is renewed at a faster rate than protein.  相似文献   

6.
The disposal phase of the retinal rod outer segment renewal process has been studied by radioautography in adult frogs injected with tritiated amino acids. Shortly after injection, newly formed radioactive protein is incorporated into disc membranes which are assembled at the base of the rod outer segment. During the following 2 months, these labeled discs are progressively displaced along the outer segment owing to the repeated formation of newer discs. When the labeled membranes reach the end of the outer segment, they are detached from it. They subsequently may be identified in inclusion bodies within the pigment epithelium by virtue of their content of radioactivity. These inclusions have been termed phagosomes. Disc membrane formation is a continuous process, but the detachment of groups of discs occurs intermittently. The detached outer segment fragments become deformed, compacted, undergo chemical changes, and are displaced within the pigment epithelium. Ultimately, the material contained in the phagosomes is eliminated from the cell. In this manner the pigment epithelium participates actively in the disposal phase of the rod outer segment renewal process.  相似文献   

7.
The isoprenoid pathway provides several important products for retina function. In this study the sterol and dolichol pathways were investigated in retinas from Rana pipiens in order to assess the contribution of de novo synthesis. Levels of 5.9 +/- 2.0 (n = 13) nmol/retina for squalene, 134 +/- 27 (n = 16) nmol/retina for cholesterol, and 0.14 +/- 0.04 (n = 11) nmol/retina for dolichyl phosphate (Dol-P) were determined by high performance liquid chromatography analysis. When whole retinas were incubated with 3H2O, radioactivity was incorporated into compounds which chromatographed on reversed-phase and silica high performance liquid chromatography at the elution positions of squalene, cholesterol, lathosterol, and methyl sterols. From these results, the upper limit for the absolute rate of the sterol pathway was estimated to be 3.4 pmol/h. When retinas were incubated with [3H]acetate, the major labeled product was squalene. The relatively low level of incorporation into cholesterol was apparently due to a substantial pool of squalene which accumulated de novo incorporated [3H]acetate. Dol-P was also labeled with [3H]acetate, and by comparing the ratio of 3H incorporation into Dol-P/squalene with the absolute rate of the sterol pathway, the absolute rate of Dol-P synthesis was determined to be 0.022 pmol/h. Our calculations indicate that the retina does not synthesize sufficient quantities of cholesterol de novo to account for that which is utilized in the biogenesis of rod outer segment membranes.  相似文献   

8.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

9.
To test the effects of isolation on adult neurons, we investigated the fine structure and synaptic activity of rod cells dissociated from the mature salamander retina and maintained in vitro. First, freshly isolated rod cells appeared remarkably similar to their counterparts in the intact retina: the outer segment retained its stack of membranous disks and the inner segment contained its normal complements of organelles. Some reorganization of the cell surface, however, was observed: (a) radial fins, present at the level of the cell body, were lost; and (b) the apical and distal surfaces of the inner and outer segments, respectively became broadly fused. Second, the synaptic endings or pedicles retained their presynaptic active zones: reconstruction of serially sectioned pedicles by using three-dimensional computer graphics revealed that 73% of the synaptic ribbons remained attached to the plasmalemma either at the cell surface or along its invaginations. Finally, tracer experiments that used horseradish peroxidase demonstrated that dissociated rod cells recycled synaptic vesicle membrane in the dark and thus probably released transmitter by exocytosis. Under optimal conditions, a maximum of 40% of the synaptic vesicles within the pedicle were labeled. As in the intact retina, uptake of horseradish peroxidase was suppressed by light. Thus, freshly dissociated receptor neurons retained many of their adult morphological and physiological characteristics. In long-term culture, the photoreceptors tended to round up; however, active zones were present even 2 wk after removal of the postsynaptic processes.  相似文献   

10.
Ultrastructural localization of rhodopsin in the vertebrate retina   总被引:11,自引:9,他引:2       下载免费PDF全文
Early work by Dewey and collaborators has shown the distribution of rhodopsin in the frog retina. We have repeated these experiments on cow and mouse eyes using antibodies specific to rhodopsin alone. Bovine rhodopsin in emulphogene was purified on an hydroxyapatite column. The purity of this reagent was established by spectrophotometric criteria, by sodium dodecyl sulfate (SDS) gel electrophoresis, and by isoelectric focusing. This rhodopsin was used as an immunoadsorbent to isolate specific antibodies from the antisera of rabbits immunized with bovine rod outer segments solubilized in 2% digitonin. The antibody so prepared was shown by immunoelectrophoresis to be in the IgG class and did not cross-react with lipid extracts of bovine rod outer segments. Papain-digested univalent antibodies (Fab) coupled with peroxidase were used to label rhodopsin in formaldehyde-fixed bovine and murine retinas. In addition to the disk membranes, the plasma membrane of the outer segment, the connecting cilium, and part of the rod inner segment membrane were labeled. We observed staining on both sides of the rod outer segment plasma membrane and the disk membrane. Discrepancies were observed between results of immunolabeling experiments and observations of membrane particles seen in freeze-cleaved specimens. Our experiments indicate that the distribution of membrane particles in freeze cleaving experiments reflects the distribution of membrane proteins. Immunolabeling, on the other hand, can introduce several different types of artifact, unless controlled with extreme care.  相似文献   

11.
P L Witt  M D Bownds 《Biochemistry》1987,26(6):1769-1776
Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. Several control experiments indicated that the labeled proteins are integral membrane proteins and that label is limited to the plasma membrane. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger.  相似文献   

12.
The outer segment portion of photoreceptor rod cells is composed of a stacked array of disk membranes. Newly formed disks are found at the base of the rod outer segment (ROS) and are relatively high in membrane cholesterol. Older disks are found at the apical tip of the ROS and are low in membrane cholesterol. Disk membranes were separated based on their membrane cholesterol content and the extent of membrane protein phosphorylation determined. Light induced phosphorylation of ROS disk membrane proteins was investigated using magic angle spinning31P NMR. When intact rod outer segment preparations were stimulated by light, in the presence of endogenously available kinases, membrane proteins located in disks at the base of the ROS were more heavily phosphorylated than those at the tip. SDS-gel electrophoresis of the phosphorylated disk membranes subpopulations identified a phosphoprotein species with a molecular weight of approximately 68–72 kDa that was more heavily phosphorylated in newly formed disks than in old disks. The identity of this phosphoprotein is presently under investigation. When the phosphorylation reaction was carried out in isolated disk membrane preparations with exogenously added co-factors and kinases, there was no preferential protein phosphorylation. Taken collectively, these results suggest that within the ROS there is a protein phosphorylation gradient that maybe indicative of co-factor or kinase heterogeneity.  相似文献   

13.
Purified disk membranes from rod outer segments of the bovine retina were able to synthesize ATP with a maximal activity (about 52 nmoles ATP/min/mg of protein) at physiological calcium concentrations. This activity was inhibited by vanadate or thapsigargin but not by oligomycin, suggesting the reversal functioning of the disk Ca(2+)-ATPase, which would act as a ATP synthesizer at the expense of the calcium gradient between the disks and the cytoplasm of the rod outer segment. The results are discussed in terms of the need of an immediate source of ATP on the disk membranes where the energy is required to supply the rapid reactions of the photoreception processes.  相似文献   

14.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

15.
A diffusion barrier segregates the plasma membrane of the rod photoreceptor outer segment into 2 domains; one which is optimized for the conductance of ions in the phototransduction cascade and another for disk membrane synthesis. We propose the former to be named “phototransductive plasma membrane domain," and the latter to be named “disk morphogenic plasma membrane domain." Within the phototransductive plasma membrane, cGMP-gated channels are concentrated in striated membrane features, which are proximally located to the sites of active cGMP production within the disk membranes. For proper localization of cGMP-gated channel to the phototransductive plasma membrane, the glutamic acid-rich protein domain encoded in the β subunit plays a critical role. Quantitative study suggests that the disk morphogenic domain likely plays an important role in enriching rhodopsin prior to its sequestration into closed disk membranes. Thus, this and our previous studies provide new insight into the mechanism that spatially organizes the vertebrate phototransduction cascade.  相似文献   

16.
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc. Alongside rhodopsin, peripherin/Rom proteins located in the disk rims are thought to be responsible for disk morphology. Here we describe the supramolecular structure of rod outer segment disk membranes and the spatial organization of rhodopsin and peripherin/Rom molecules. Using atomic force microscopy operated in physiological buffer solution, we found that rhodopsin is loosely packed in the central region of the disks, in average about 26?000 molecules covering approximately one third of the disk surface. Peripherin/Rom proteins form dense assemblies in the rim region. A protein-free lipid bilayer girdle separates the rhodopsin and peripherin/Rom domains. The described supramolecular assembly of rhodospin, peripherin/Rom and lipids in native rod outer segment disks is consistent with the functional requirements of photoreception.  相似文献   

17.
The rod outer segments of bovine retina contain two different adenylate kinases: a soluble activity, which is not sensitive to calcium ion, and an activity bound to disk membranes, which is dependent on the calcium levels. In fact, the maximal activity associated to the disks is reached at Ca(2+) concentrations between 10(-6) and 10(-7) M, which is the range of calcium level actually present in the rod cell. The Michaelis-Menten kinetics of the enzyme activity on disk membranes was determined and the actual concentrations of ATP, AMP and ADP were measured in the photoreceptor outer segment. Therefore, the physiological relevance of the adenylate kinase activity was discussed considering the above results. The formation of ATP catalyzed by the enzyme seems appropriate to supply at least some of the reactions necessary for phototransduction, indicating that ATP could be regenerated from ADP directly on the disk membranes where the photoreception events take place.  相似文献   

18.
We developed an inducible transgene expression system in Xenopus rod photoreceptors. Using a transgene containing mCherry fused to the carboxyl terminus of rhodopsin (Rho-mCherry), we characterized the displacement of rhodopsin (Rho) from the base to the tip of rod outer segment (OS) membranes. Quantitative confocal imaging of live rods showed very tight regulation of Rho-mCherry expression, with undetectable expression in the absence of dexamethasone (Dex) and an average of 16.5 µM of Rho-mCherry peak concentration after induction for several days (equivalent to >150-fold increase). Using repetitive inductions, we found the axial rate of disk displacement to be 1.0 µm/day for tadpoles at 20 °C in a 12 h dark /12 h light lighting cycle. The average distance to peak following Dex addition was 3.2 µm, which is equivalent to ~3 days. Rods treated for longer times showed more variable expression patterns, with most showing a reduction in Rho-mCherry concentration after 3 days. Using a simple model, we find that stochastic variation in transgene expression can account for the shape of the induction response.  相似文献   

19.
The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.  相似文献   

20.
Mature retinal rod photoreceptors sequester opsin in the disk and plasma membranes of the rod outer segment (ROS). Opsin is synthesized in the inner segment and is transferred to the outer segment along the connecting cilium that joins the two compartments. We have investigated early stages of retinal development during which the polarized distribution of opsin is established in the rod photoreceptor cell. Retinas were isolated from newborn rats, 3-21 d old, and incubated with affinity purified biotinyl-sheep anti-bovine opsin followed by avidin- ferritin. At early postnatal ages prior to the development of the ROS, opsin is labeled by antiopsin on the inner segment plasma membrane. At the fifth postnatal day, as ROS formation begins opsin was detected on the connecting cilium plasma membrane. However, the labeling density of the ciliary plasma membrane was not uniform: the proximal cilium was relatively unlabeled in comparison with the distal cilium and the ROS plasma membrane. In nearly mature rat retinas, opsin was no longer detected on the inner segment plasma membrane. A similar polarized distribution of opsin was also observed in adult human rod photoreceptor cells labeled with the same antibodies. These results suggest that some component(s) of the connecting cilium and its plasma membrane may participate in establishing and maintaining the polarized distribution of opsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号