首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane. We show here that GIT1, a GTPase-activating protein stimulating GTP hydrolysis on ARF6, is the second molecular partner that turns over the GDP/GTP cycle of ARF6 during cell stimulation. Western blot and immunofluorescence experiments indicated that GIT1 is cytosolic in resting cells but is recruited to the plasma membrane in stimulated cells, where it co-localizes with ARF6 at the granule docking sites. Over-expression of wild-type GIT1 inhibits growth hormone secretion from PC12 cells; this inhibitory effect was not observed in cells expressing a GIT1 mutant impaired in its ARF-GTPase-activating protein (GAP) activity or in cells expressing other ARF6-GAPs. Conversely reduction of GIT1 by RNA interference increased the exocytotic activity. Using a real time assay for individual chromaffin cells, we found that microinjection of GIT1 strongly reduced the number of exocytotic events. These results provide the first evidence that GIT1 plays a function in calcium-regulated exocytosis in neuroendocrine cells. We propose that GIT1 represents part of the pathway that inactivates ARF6-dependent reactions and thereby negatively regulates and/or terminates exocytotic release.  相似文献   

2.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

3.
Substantial efforts have recently been made to demonstrate the importance of lipids and lipid-modifying enzymes in various membrane trafficking processes, including calcium-regulated exocytosis of hormones and neurotransmitters. Among bioactive lipids, phosphatidic acid (PA) is an attractive candidate to promote membrane fusion through its ability to change membrane topology. To date, however, the biosynthetic pathway, the dynamic location, and actual function of PA in secretory cells remain unknown. Using a short interference RNA strategy on chromaffin and PC12 cells, we demonstrate here that phospholipase D1 is activated in secretagogue-stimulated cells and that it produces PA at the plasma membrane at the secretory granule docking sites. We show that phospholipase D1 activation and PA production represent key events in the exocytotic progression. Membrane capacitance measurements indicate that reduction of endogenous PA impairs the formation of fusion-competent granules. Finally, we show that the PLD1 short interference RNA-mediated inhibition of exocytosis can be rescued by exogenous provision of a lipid that favors the transition of opposed bi-layer membranes to hemifused membranes having the outer leaflets fused. Our findings demonstrate that PA synthesis is required during exocytosis to facilitate a late event in the granule fusion pathway. We propose that the underlying mechanism is related to the ability of PA to alter membrane curvature and promote hemi-fusion.  相似文献   

4.
Phospholipase D (PLD) has been proposed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. We recently described the activation of an ADP ribosylation factor-regulated PLD at the plasma membrane of chromaffin cells undergoing secretagogue-stimulated exocytosis. We show here that the isoform involved is PLD1b, and, using a real-time assay for individual cells, that PLD activation and exocytosis are closely correlated. Moreover, overexpressed PLD1, but not PLD2, increases stimulated exocytosis in a phosphatidylinositol 4,5-bisphosphate-dependent manner, whereas catalytically inactive PLD1 inhibits it. These results provide the first direct evidence that PLD1 is an important component of the exocytotic machinery in neuroendocrine cells.  相似文献   

5.
6.
Phospholipase D (PLD) activation involved in signal transduction may lead to the hydrolysis of conspicuous amounts of phosphatidylcholine (PC). This study shows that PLD activation significantly alters the plasma membrane (PM) environment and the membrane exchange dynamics. PC-PLD activation in vasopressin (AVP)-stimulated L6 myogenic cells was accompanied by increased exocytosis and decreased membrane fluidity, as shown by transmission EM and fluorescence spectroscopy of trimethylammonium-diphenyl-hexatriene. AVP-induced exocytosis appeared to be brefeldin A-insensitive. PLD inhibition by Zn(2+) and PC de novo synthesis inhibition by hexadecylphosphocholine abolished AVP-induced vesicle traffic. Upon AVP stimulation, metabolically labeled PC decreased in PM, then transiently increased in microsomes, and returned to the prestimulus level in the PM within 5 min, a phenomenon requiring PC neosynthesis and microtubule functionality. Vesicle traffic with similar features was also observed after endothelin-1-induced PC-PLD activation in rat peritubular myoid cells. These results indicate that, in nonsecretory cells, exocytosis coupled to PC de novo synthesis restores PM-PC, conspicuously consumed during PLD-mediated signal transduction.  相似文献   

7.
Many secretory cells utilize a GTP-dependent pathway, in addition to the well characterized Ca2+-dependent pathway, to trigger exocytotic secretion. However, little is currently known about the mechanism by which this may occur. Here we show the key signaling pathway that mediates GTP-dependent exocytosis. Incubation of permeabilized PC12 cells with soluble RalA GTPase, but not RhoA or Rab3A GTPases, strongly inhibited GTP-dependent exocytosis. A Ral-binding fragment from Sec5, a component of the exocyst complex, showed a similar inhibition. Point mutations in both RalA (RalA(E38R)) and the Sec5 (Sec5(T11A)) fragment, which abolish RalA-Sec5 interaction also abolished the inhibition of GTP-dependent exocytosis. Moreover, transfection with wild-type RalA, but not RalA(E38R), enhanced GTP-dependent exocytosis. In contrast the RalA and the Sec5 fragment showed no inhibition of Ca2+-dependent exocytosis, but cleavage of a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein by Botulinum neurotoxin blocked both GTP- and Ca2+-dependent exocytosis. Our results indicate that the interaction between RalA and the exocyst complex (containing Sec5) is essential for GTP-dependent exocytosis. Furthermore, GTP- and Ca2+-dependent exocytosis use different sensors and effectors for triggering exocytosis whereas their final fusion steps are both SNARE-dependent.  相似文献   

8.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

9.
Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of H-Ras but not K-Ras. H-Ras and K-Ras have been reported to localize to different membrane microdomains, with H-Ras localizing to caveolin-enriched light membrane fractions. We reported previously that PLD activity elevated in response to mitogenic stimulation is restricted to the caveolin-enriched light membrane fractions. PLD activity in H-Ras-transformed cells is dependent upon RalA, and consistent with a lack of elevated PLD activity in K-Ras-transformed cells, RalA was not activated in K-Ras-transformed cells. Although H-Ras-induced PLD activity is dependent upon RalA, an activated mutant of RalA is not sufficient to elevate PLD activity. We reported previously that RalA interacts with PLD activating ADP ribosylation factor (ARF) proteins. In cells transformed by H-Ras, we found increased coprecipitation of ARF6 with RalA. Moreover, ARF6 colocalized with RalA in light membrane fractions. Interestingly, ARF6 protein levels were elevated in H-Ras- but not K-Ras-transformed cells. A dominant-negative mutant of ARF6 inhibited PLD activity in H-Ras-transformed NIH 3T3 cells. Activated mutants of either ARF6 or RalA were not sufficient to elevate PLD activity in NIH 3T3 cells; however, expression of both activated RalA and activated ARF6 in NIH 3T3 cells led to increased PLD activity. These data suggest a model whereby H-Ras stimulates the activation of both RalA and ARF6, which together lead to the elevation of PLD activity.  相似文献   

10.
The activation of beta-adrenergic receptors in rat parotid acinar cells causes intracellular cAMP elevation and appreciably stimulates the exocytotic release of amylase into saliva. The activation of Ca(2+)-mobilizing receptors also induces some exocytosis. We investigated the role of phospholipase D (PLD) in regulated exocytosis in rat parotid acinar cells. A transphosphatidylation assay detected GTPgammaS (a nonhydrolyzable analogue of GTP)-dependent PLD activity in lysates of rat parotid acinar cells, suggesting that PLD is activated by small molecular mass GTP-binding proteins. The PLD inhibitor, neomycin, suppressed cAMP-dependent exocytosis in saponin-permeabilized cells. Signaling downstream of PLD was disrupted by 1-butanol due to conversion of the PLD reaction product (phosphatidic acid) to phosphatidylbutanol. The stimulation of exocytosis by isoproterenol as well as by a Ca(2+)-mobilizing agonist (methacholine) was inhibited by 1-butanol. These results suggest that PLD is important for regulated exocytosis in rat parotid acinar cells.  相似文献   

11.
Several studies have shown that the neuronal calcium sensor (NCS-1) and phosphoinositol 4-kinase-beta (PI4K-beta) regulate the exocytotic process of nerve and neuroendocrine cells. The aim of our study was to investigate their possible interaction at rest and during stimulation in living cells and to decipher the role of this interaction in the secretory process. In PC12 cells, we observed a stimulation-induced recruitment of NCS-1 and PI4K-beta from the intracellular compartment toward the plasma membrane. This recruitment was highly correlated to the intracellular Ca(2+) rise induced by secretagogues. Using fluorescence resonance energy transfer between PI4K-beta-ECFP and NCS-1-EYFP, we show that both proteins are interacting in resting cells and that this interaction increases with stimulation. It appears that the membrane insertion of NCS-1 is necessary for the interaction with PI4K-beta, since a mutation that prevented the membrane insertion of NCS-1 abolished NCS-1-PI4K-beta interaction, as revealed by fluorescence resonance energy transfer analysis. Additionally, the overexpression of mutated NCS-1 prevents the stimulatory effect on secretion induced by PI4K-beta, suggesting that the interaction of the two proteins on a membrane compartment is necessary for the secretory function. Moreover, extinction of endogenous PI4K-beta by small interfering RNA inhibits secretion and completely prevents the stimulatory effect of NCS-1 on calcium-evoked exocytosis from permeabilized PC12 cells, showing directly for the first time the functional implication of a NCS-1.PI4K-beta complex in regulated exocytosis.  相似文献   

12.
The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulated cells by processes reminiscent of exocytosis and fusion of granules with the plasma membrane. These processes and secretion of granules are suppressed by expression of a catalytically inactive mutant of PLD1 or by the presence of 50 mM 1-butanol but not tert-butanol, an indication that these events are dependent on the catalytic activity of PLD1. Of note, cholera toxin induces translocation of PLD1-labeled granules to the plasma membrane but not fusion of granules with plasma membrane or secretion. Subsequent stimulation of calcium influx with Ag or thapsigargin leads to rapid redistribution of PLD1 to the plasma membrane and accelerated secretion. Also of note, PLD1 is recycled from plasma membrane back to granules within 4 h of stimulation. PLD2, in contrast, is largely confined to the plasma membrane, but it too participates in the secretory process, because expression of catalytically inactive PLD2 also blocks secretion. These data indicate a two-step process: translocation of granules to the cell periphery, regulated by granule-associated PLD1, and a calcium-dependent fusion of granules with the plasma membrane, regulated by plasma membrane-associated PLD2 and possibly PLD1.  相似文献   

13.
Calmodulin has long been suspected to be involved in calcium-regulated exocytosis but its precise site(s) of action has not yet been identified. In Paramecium, a genetic approach to the problem is possible as in vivo-selected mutations in the calmodulin gene that prevent the activation of some channels have been characterized. Three of these calmodulin mutants were examined for exocytotic capacity and the mutant cam1 was found to be defective for exocytosis at 35 degrees C. The loss of exocytotic capacity in cam1 cells can be restored by transformation with the wild-type calmodulin gene, demonstrating that its exocytotic lesion is indeed due to the mutation in the calmodulin gene. The cam1 mutant displays abnormal exocytotic sites at the non-permissive temperature: it lacks the links ('rosettes' of intramembranous particles in the plasma membrane and the fibrous 'connecting material') which normally connect plasma and trichocyst membranes. Upon shift of cam1 cells from the permissive to a non-permissive temperature, performed sites remain functional. These results demonstrate that calmodulin is necessary for the assembly of these links at the exocytotic site. These results do not, however, exclude the possibility of calmodulin also being involved in Ca(2+)-dependent steps of the stimulus-exocytosis coupling.  相似文献   

14.
The signaling enzyme phospholipase D1 (PLD1) facilitates membrane vesicle trafficking. Here, we explore how PLD1 subcellular localization is regulated via Phox homology (PX) and pleckstrin homology (PH) domains and a PI4,5P2-binding site critical for its activation. PLD1 localized to perinuclear endosomes and Golgi in COS-7 cells, but on cellular stimulation, translocated to the plasma membrane in an activity-facilitated manner and then returned to the endosomes. The PI4,5P2-interacting site sufficed to mediate outward translocation and association with the plasma membrane. However, in the absence of PX and PH domains, PLD1 was unable to return efficiently to the endosomes. The PX and PH domains appear to facilitate internalization at different steps. The PH domain drives PLD1 entry into lipid rafts, which we show to be a step critical for internalization. In contrast, the PX domain appears to mediate binding to PI5P, a lipid newly recognized to accumulate in endocytosing vesicles. Finally, we show that the PH domain-dependent translocation step, but not the PX domain, is required for PLD1 to function in regulated exocytosis in PC12 cells. We propose that PLD1 localization and function involves regulated and continual cycling through a succession of subcellular sites, mediated by successive combinations of membrane association interactions.  相似文献   

15.
Release of neurotransmitters and hormones occurs by calcium-regulated exocytosis, a process that shares many similarities in neurons and neuroendocrine cells. Exocytosis is confined to specific regions in the plasma membrane, where actin remodelling, lipid modifications and protein-protein interactions take place to mediate vesicle/granule docking, priming and fusion. The spatial and temporal coordination of the various players to form a "fast and furious" machinery for secretion remain poorly understood. ARF and Rho GTPases play a central role in coupling actin dynamics to membrane trafficking events in eukaryotic cells. Here, we review the role of Rho and ARF GTPases in supplying actin and lipid structures required for synaptic vesicle and secretory granule exocytosis. Their possible functional interplay may provide the molecular cues for efficient and localized exocytotic fusion.  相似文献   

16.
Calcium-dependent exocytosis of fluorescently labeled single secretory vesicles in PC12 cells and primary embryonic telencephalon cells can be triggered by illumination with visible light and imaged by TIRF or epifluorescence microscopy. Opsin 3 was identified by quantitative PCR expression analysis as the putative light receptor molecule for light-induced exocytosis. In primary chicken telencephalon cells, light-induced exocytosis is restricted to a specific period during embryonic development, and involves fusion of rather large vesicles. Strictly calcium-dependent exocytosis starts after a delay of a few seconds of illumination and lasts for up to 2 min. We analyzed the frequency, time course and spatial distribution of exocytotic events. Exocytosis in PC12 cells and telencephalon cells occurs at the periphery or the interface between dividing cells, and the duration of single secretion events varies considerably. Our observation strongly supports the idea that light induced exocytosis is most likely a mechanism for building plasma membrane during differentiation, development and proliferation rather than for calcium-dependent neurotransmitter release.  相似文献   

17.
RalA, a member of the Ras-family GTPases, regulates various cellular functions such as filopodia formation, endocytosis, and exocytosis. On epidermal growth factor (EGF) stimulation, activated Ras recruits guanine nucleotide exchange factors (GEFs) for RalA, followed by RalA activation. By using fluorescence resonance energy transfer-based probes for RalA activity, we found that the EGF-induced RalA activation in Cos7 cells was restricted at the EGF-induced nascent lamellipodia, whereas under a similar condition both Ras activation and Ras-dependent translocation of Ral GEFs occurred more diffusely at the plasma membrane. This EGF-induced RalA activation was not observed when lamellipodial protrusion was suppressed by a dominant negative mutant of Rac1, a GTPase-activating protein for Cdc42, inhibitors of phosphatidylinositol 3-kinase, or inhibitors of actin polymerization. On the other hand, EGF-induced lamellipodial protrusion was inhibited by microinjection of the RalA-binding domains of RalBP1 and Sec5. Furthermore, we found that RalA activity was high at the lamellipodia of migrating Madin-Darby canine kidney cells and that the migration of Madin-Darby canine kidney cells was perturbed by the microinjection of RalBP1-RalA-binding domain. Thus, RalA activation is required for the induction of lamellipodia, and conversely, lamellipodial protrusion seems to be required for the RalA activation, suggesting the presence of a positive feedback loop between RalA activation and lamellipodial protrusion. Our observation also demonstrates that the spatial regulation of RalA is conducted by a mechanism distinct from the temporal regulation conducted by Ras-dependent plasma membrane recruitment of Ral guanine nucleotide exchange factors.  相似文献   

18.
RalA is a small GTPase that is thought to facilitate exocytosis through its direct interaction with the mammalian exocyst complex. In this study, we report an essential role for RalA in regulated insulin secretion from pancreatic beta cells. We employed lentiviral-mediated delivery of RalA short hairpin RNAs to deplete endogenous RalA protein in mouse pancreatic islets and INS-1 beta cells. Perifusion of mouse islets depleted of RalA protein exhibited inhibition of both first and second phases of glucose-stimulated insulin secretion. Consistently, INS-1 cells depleted of RalA caused a severe inhibition of depolarization-induced insulin exocytosis determined by membrane capacitance, including a reduction in the size of the ready-releasable pool of insulin granules and a reduction in the subsequent mobilization and exocytosis of the reserve pool of granules. Collectively, these data suggest that RalA is a critical component in biphasic insulin release from pancreatic beta cells.  相似文献   

19.
Phospholipase Ds (PLDs) are regulated enzymes that generate phosphatidic acid (PA), a putative second messenger implicated in the regulation of vesicular trafficking and cytoskeletal reorganization. Mast cells, when stimulated with antigen, show a dramatic alteration in their cytoskeleton and also release their secretory granules by exocytosis. Butan-1-ol, which diverts the production of PA generated by PLD to the corresponding phosphatidylalcohol, was found to inhibit membrane ruffling when added together with antigen or when added after antigen. Inhibition by butan-1-ol was completely reversible because removal of butan-1-ol restored membrane ruffling. Measurements of PLD activation by antigen indicate a requirement for continual PA production during membrane ruffling, which was maintained for at least 30 min. PLD1 and PLD2 are both expressed in mast cells and green fluorescent protein-tagged proteins were used to identify PLD2 localizing to membrane ruffles of antigen-stimulated mast cells together with endogenous ADP ribosylation factor 6 (ARF6). In contrast, green fluorescent protein-PLD1 localized to intracellular vesicles and remained in this location after stimulation with antigen. Membrane ruffling was independent of exocytosis of secretory granules because phorbol 12-myristate 13-acetate increased membrane ruffling in the absence of exocytosis. Antigen or phorbol 12-myristate 13-acetate stimulation increased both PLD1 and PLD2 activity when expressed individually in RBL-2H3 cells. Although basal activity of PLD2-overexpressing cells is very high, membrane ruffling was still dependent on antigen stimulation. In permeabilized cells, antigen-stimulated phosphatidylinositol(4,5)bisphosphate synthesis was dependent on both ARF6 and PA generated from PLD. We conclude that both activation of ARF6 by antigen and a continual PLD2 activity are essential for local phosphatidylinositol(4,5)bisphosphate generation that regulates dynamic actin cytoskeletal rearrangements.  相似文献   

20.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号