首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is a scale-down study of a 500-m3 methane recovery test plant for anaerobic treatment of palm oil mill effluent (POME) where biomass washout has become one of the problems because of the continuous mixing of effluent during anaerobic treatment of POME. Therefore, in this study, anaerobic POME treatment using a scaled down 50-l bioreactor which mimicked the 500-m3 bioreactor was carried out to improve biogas production with and without biomass sedimentation. Three sets of experiments were conducted under different conditions in terms of biomass sedimentation applied to the system. The first experiment was operated under semi-continuous mode whereas the second and third experiments were operated based on mix and settle mode. As expected, biomass retention improved the anaerobic process as the POME treatment incorporated with mix and settle system were able to operate at an organic loading rate (OLR) of 3.5 and 6.0 kg COD/m3/day respectively, while the semi-continuous operated anaerobic treatment only achieved OLR of 3.0 kg COD/m3/day. The highest biogas and methane production rates achieved were 2.42 m3/m3 of reactor/day and 0.992 m3/m3 of reactor/day, respectively at OLR 6.0 kg COD/m3/day. The biomass or solids retention in the reactors was represented by the total solids measured in this study.  相似文献   

2.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

3.
The kinetics of anaerobic digestion of cane molasses distillery slops was investigated using a continuous-flow bioreactor which contained waste tyre rubber as support, to which the microorganisms became immobilized. Hydraulic retention times (HRT) ranging from 1 to 10 days were investigated at an average influent chemical oxygen demand (COD) concentration of 47.7?g/l. The maximum substrate utilization rate, k, and half saturation coefficient, K L, were determined to be 1.82?kg CODremoved/kg VSS day and 0.33?kg COD/kg VSS day. The yield coefficient, Y, and sludge decay rate coefficient, K d, were also determined to be 0.06?kg VSS/kg CODremoved and 0.05?day-1, respectively. Methane production was maximum (6.75?l/l day) at a 2 day HRT corresponding to a biomass loading rate of 2.578?kg COD/kg VSS day. Biogas yield ranged between 0.51?l/g COD (HRT=2 days) and 0.25?l/g COD (HRT=1?day). In addition, the methane percentage in the biogas varied between 70.5% (HRT=10?days) and 47.5% (HRT=1?day). The close relationship between biomass loading rate and specific substrate utilization rate supported the use of Monod equations. Finally, the experimental values of effluent substrate concentration were reproduced with deviations equal to or less than 10% in every case.  相似文献   

4.
Aerobic sludge granules are compact, strong microbial aggregates that have excellent settling ability and capability to efficiently treat high-strength and toxic wastewaters. Aerobic granules disintegrate under high organic loading rates (OLR). This study cultivated aerobic granules using acetate as the sole carbon and energy source in three identical sequencing batch reactors operated under OLR of 9–21.3 kg chemical oxygen demand (COD) m−3 day−1. The cultivated granules removed 94–96% of fed COD at OLR up to 9–19.5 kg COD m−3 day−1, and disintegrated at OLR of 21.3 kg COD m−3 day−1. Most tested isolates did not grow in the medium at >3,000 mg COD l−1; additionally, these strains lost capability for auto-aggregation and protein or polysaccharide productivity. This critical COD regime correlates strongly with the OLR range in which granules started disintegrating. Reduced protein quantity secreted by isolates was associated with the noted poor granule integrity under high OLR. This work identified a potential cause of biological nature for aerobic granules breakdown.  相似文献   

5.
The new attached growth sponge tray bioreactor (STB) was evaluated at different operating conditions for removing organics and nutrients from primary treated sewage effluent. This STB was also assessed when using as a pre-treatment prior to micro-filtration (MF) for reducing membrane fouling. At a short hydraulic retention time (HRT) of 40 min, the STB could remove up to 92% of DOC and 40-56% of T-N and T-P at an organic loading rate (OLR) of 2.4 kg COD/m3 sponge day. This OLR is the best for the STB as compared to the OLRs of 0.6, 1.2 and 3.6 kg COD/m3 sponge day. At 28 mL/min of flow velocity (FV), STB achieved the highest efficiencies with 92% of DOC, 87.4% of T-P, and 54.8% of T-N removal. Finally, at the optimal OLR and FV, the STB could remove almost 90% of organic and nutrient, significantly reduce membrane fouling with HRT of only 120 min.  相似文献   

6.
Summary A high-strength baker's yeast effluent was anaerobically treated using a hybrid digester under mesophilic conditions. The digester was subjected to a substrate COD concentration of 21 767 mg/I at three different HRTs. At HRTs of 3.0, 2.0 and 1.0 d, the digester reduced the substrate COD by 76, 61 and 33%, respectively. Although the best COD removal was obtained at an OLR of 7.30 kg COD/m3.d, the highest COD removal rate (6.51 kg COD/M3-d) was found at 10.65 kg COD/m3.d at an HRT of 2.0 d. The low methane yield and VFA accumulation found in the digester effluent, indicated inhibition on methanogenic level and this was considered to be the rate-limiting step during the anaerobic treatment process. The overall efficiency of the digester indicated that this digester design and support medium was suitable for the treatment of a high-strength, sulfate-rich baker's yeast effluent.  相似文献   

7.
Treatment of distillery spentwash by hybrid UASB reactor   总被引:2,自引:0,他引:2  
A laboratory-scale hybrid UASB reactor, which combined an UASB in the lower part and a filter in the upper part, was used for the treatment of distillery spentwash. The reactor was operated under ambient conditions for 380 days. Using anaerobically digested sewage sludge as a seed, the start-up of the reactor and the cultivation of active granular sludge was completed within three months period. Scanning electron microscopic (SEM) observation of the granules showed the presence of Mehtanonthrix-like bacteria as the dominant species. Following the start-up the organic loading rate (OLR) was increased, stepwise, to 36 kg COD/m3 · d at a constant hydraulic retention time (HRT) of 6 h. COD removal efficiency was 80% even at a high OLR of 36 kg COD/m3 · d. Biogas rich in methane content (80%), with a maximum specific biogas yield of 0.40 m3 CH4/kg · COD was produced. Polypropylene pall rings filter medium in the upper-third of the reactor was very effective as a gas-liquid-solid (GLS) separator, and retained the biomass in addition. The study indicated that hybrid UASB is a very feasible alternative for the treatment of high-strength wastewaters like distillery spentwash.  相似文献   

8.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity.  相似文献   

9.
Poor startup of biological hydrogen production systems can cause an ineffective hydrogen production rate and poor biomass growth at a high hydraulic retention time (HRT), or cause a prolonged period of acclimation. In this paper a new startup strategy was developed in order to improve the enrichment of the hydrogen‐producing population and the efficiency of hydrogen production. A continuously‐stirred tank reactor (CSTR) and molasses were used to evaluate the hydrogen productivity of the sewage sludge microflora at a temperature of 35 °C. The experimental results indicated that the feed to microorganism ratio (F/M ratio) was a key parameter for the enrichment of hydrogen producing sludge in a continuous‐flow reactor. When the initial biomass was inoculated with 6.24 g of volatile suspended solids (VSS)/L, an HRT of 6 h, an initial organic loading rate (OLR) of 7.0 kg chemical oxygen demand (COD)/(m3 × d) and an feed to microorganism ratio (F/M) ratio of about 2–3 g COD/(g of volatile suspended solids (VSS) per day) were maintained during startup. Under these conditions, a hydrogen producing population at an equilibrium state could be established within 30 days. The main liquid fermentation products were acetate and ethanol. Biogas was composed of H2 and CO2. The hydrogen content in the biogas amounted to 47.5 %. The average hydrogen yield was 2.01 mol/mol hexose consumed. It was also observed that a special hydrogen producing population was formed when this startup strategy was used. It is supposed that the population may have had some special metabolic pathways to produce hydrogen along with ethanol as the main fermentation products.  相似文献   

10.
The effect of hydraulic loading rate (HLR) and hydraulic retention time (HRT) on the bioremediation of municipal wastewater using a pilot scale subsurface horizontal flow constructed treatment wetland (HFCTW) vegetated with Cyprus papyrus was investigated. Different HLRs were applied to the treatment system namely 0.18, 0.10, and 0.07 m3/m2. d with corresponding HRTs of 1.8, 3.2, and 4.7 days, respectively. The flow rate was 8 m3/d, and the average organic loading rate (OLR) was 0.037 kg BOD/m3/d. Results showed that the performance of the HFCTW was linearly affected by decreasing the HLR and increasing the HRT. The highest treatment efficiency was achieved at HRT (4.7 days) and HLR (0.07 m3/m2. d). The percentage reductions of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) were 86%, 87%, and 80%, respectively. Satisfactory nutrient removal was obtained. Also, removal of 2–3 logs of bacterial indicators of pollution was achieved. The dry biomass of Cyperus was 7.7 kg/m2 and proved to be very efficient in nitrification processes due to high diversity of the roots that increase the treatment surface area.  相似文献   

11.
A 19.2 l multiplate anaerobic reactor (MPAR) was used to assess the impact of lime (Ca(OH)2) on the anaerobic treatment of whey permeate effluents. The amount of Ca(OH)2 required to maintain the pH of the whey permeate around 5 ranged between 3.0 and 4.5 kg/m3, which corresponded to concentration varying between 1.62 and 2.43 kg/m3. Soluble chemical oxygen demand (COD) removal efficiency exceeded 92% with a methane production rate of 6.7 m3/m3.d. at an organic loading rate (OLR) as high as 20 kg COD/m3.d. Extended operation of the MPAR resulted in the accumulation of significant amounts of calcium precipitates in the sludge bed which reached after three months of operation 0.19, 0.25 and 0.33 kg Ca2+ per kg of suspended solid (SS) in the lower, the middle and the upper compartment of the MPAR, respectively. The volatile suspended solids to suspended solids ratio (VSS/SS) decreased from 0.83 in inoculum to 0.37, 0.22 and 0.08 in the lower, the middle and the upper compartment of the MPAR, respectively. As a result, the soluble COD reduction and the methane production rate decreased to 31% and to 2.3 m3/m3.d. respectively, at OLR of 20 kg COD/m3.d.The authors thank Saputo Cheese Ltd. for providing the whey permeate effluents, Alain Corriveau for expert analytical assistance and Hervé Macarie for revising the article. NRC Paper No. 33907  相似文献   

12.
《Anaerobe》2001,7(1):25-35
This paper describes the thermophilic anaerobic biodegradation of wine distillery wastewater (vinasses) in a laboratory fluidised bed reactor (AFB) with a porous support medium. The experimental protocol was defined to examine the effect of increasing organic loading rate on the efficiency of AFB and to report on its steady-state performance. Moreover, in order to evaluate treatment efficiency and to investigate fermentation kinetics in an AFB reactor, experimental data were used to estimate the ‘active biomass’ concentration using an autocatalytic kinetic model proposed in this paper, since viable biomass in AFB reactors is very difficult to measure experimentally. The AFB reactor was subjected to a program of steady-state operation over a range of hydraulic retention time (HRTs) of 2.5–0.37 days and organic loading rate (OLRs) up to 5.88 kgCOD/m3/day in order to evaluate its treatment capacity. The AFB reactor was initially operated with organic loading rate of 5.88 kgCOD/m3/day and HRT of 2.5 days. The chemical oxygen demand (COD) removal efficiency was found to be 96.5% in the reactor while the methane content of biogas produced in the digester reached 1.08 m3/m3digester/day. Over 94 days operating period, an OLR of 32 kgCOD/m3/day at a food-to-micro-organisms (F:M) ratio of 0.55 kgCOD/kgVSatt/day was achieved with 81.5% COD removal efficiency in the experimental AFB reactor. At this moment, the methane content of biogas produced in the digester reached 9.0 m3/m3digester/day. The proposed kinetic model is able to estimate kinetic constants of the biodegradation process: non-biodegradable substrate (Snb) and active adhered biomass concentration (Xa). The parameters of the model were obtained by the curve-fitting method to the proposed kinetic model using the COD as substrate of the anaerobic process and assuming a maximum specific μmax: 0.72 per day. The comparison of the measured concentration of volatile attached solids (VSatt) with the estimated ‘active’ biomass concentration indicated that extremely high ‘active biomass’ concentrations can be maintained in the system because biofilm thickness is limited by the liquid flow rate applied. This is due to the fact that the anaerobic fluidised bed system retains the growth support medium in suspension by drag forces exerted by upflowing wastewater, and the distribution of biomass holdup (in the form of a biofilm) is thus relatively uniform.  相似文献   

13.
The hybrid up flow anaerobic sludge blanket reactor was evaluated for efficacy in reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of bulk drug pharmaceutical wastewater under different operational conditions. The start-up of the reactor feed came entirely with glucose, applied at an organic loading rate (OLR) 1 kg COD/m3 d. Then the reactor was studied at different OLRs ranging from 2 to 11 kg COD/m3 d with pharmaceutical wastewater. The optimum OLR was found to be 9 kg COD/m3 d, where we found 65–75% COD and 80–94% of BOD reduction with biogas production containing 60–70% of methane and specific methanogenic activity was 320 ml CH4/g-VSS d. By the characterization studies of effluent using GC–MS, the hazardous compounds like phenol, l,2-methoxy phenol, 2,4,6-trichloro phenol, dibutyl phthalate, 1-bromo naphthalene, carbamazepine and antipyrine were present. After the treatment, these compounds degraded almost completely except carbamazepine. Thermophilic methanothrix and methanosaetae like bacteria are present in the granular sludge.  相似文献   

14.
Lim SJ  Fox P 《Bioresource technology》2011,102(11):6399-6404
In order to evaluate the static granular bed reactor (SGBR), a chemical oxygen demand (COD) balance was used along with a mathematical model. The SGBR was operated with an organic loading rate (OLR) ranging from 0.8 to 5.5 kg/m3 day at 24 °C. The average COD removal efficiency was 87.4%, and the removal efficiencies of COD, carbohydrates, and proteins increased with an OLR, while the lipids removal efficiency was not a function of an OLR. From the results of the COD balance, the yield of biomass increased with an OLR. The SGBR was modeled using the general transport equation considering advection, diffusion, and degradation by microorganisms, and the first-order reaction rate constant was 0.0166/day. The simulation results were in excellent agreement with experimental data. In addition, the SGBR model provided mechanistic insight into why the COD removal efficiency in the SGBR is proportional to an OLR.  相似文献   

15.
This paper describes the thermophilic (55 °C) anaerobic biodegradation of a mixed feed composed of vinasses and cutting oil wastewater (COW) in a laboratory upflow anaerobic fixed-film reactor (UAFF) with a porous support medium. The experimental protocol was defined to examine the effect of increasing the percentage of cutting oil wastewater in the feed.The UAFF reactor was initially started-up with vinasses as the only carbon source at an organic loading rate of 22.3 kg COD/m3 day and HRT of 0.8 days using porous particles as the support (SIRAN). The percentage of organic matter composed of vinasses was subsequently reduced while increasing the amount of cutting oil until 100% of cutting oil wastewater was added in the feed. Four stages were considered in the study (0, 42.4, 66.6 and 100% COW). HRT was adjusted in order to maintain an approximately constant organic loading rate applied to the system. Under theses conditions, the UAFF reactor was subjected to a programme of steady-state operation with hydraulic retention times (HRT) in the range 0.8–0.15 days and organic loading rates (OLR) between 22.3 and 14.9 kg COD/m3 day in order to evaluate the treatment capacity of the system.The COD removal efficiency was found to be 87% COD and 94.6% TOC in the reactor when treating vinasses at 22.3 kg COD/m3 day. The volumetric methane level produced in the digester reached 0.45 m3/m3 day. After an operating period of 120 days, the reactor was fed with cutting oil wastewater (COW) as the only source of carbon. An OLR of 16.7 kg COD/m3 day was achieved with 85.8% COD removal efficiency (58.1%TOC) in the experimental UAFF reactor. Under these conditions the volumetric methane produced in the digester was negligible.Hence, COW can be removed, if not degraded, by anaerobic treatment in the presence of a biodegradable co-substrate. Wine vinasses degradation creates conditions for non-biological removal of COW constituents. More studies are necessary in order to test the mechanisms of organic removal when biodegradation apparently had ceased. Also, toxicity assays of COW are necessary to evaluate the toxicity to the methanogenic community.  相似文献   

16.
This study aims at evaluating the performance of a two-chambered continuously fed microbial fuel cell with new Ti–TiO2 electrodes for bioelectricity generation from young landfill leachate at varying strength of wastewater (1–50 COD g/L) and hydraulic retention time (HRT, 0.25–2 days). The COD removal efficiency in the MFC increased with time and reached 45 % at full-strength leachate (50 g/L COD) feeding. The current generation increased with increasing leachate strength and decreasing HRT up to organic loading rate of 100 g COD/L/day. The maximum current density throughout the study was 11 A/m2 at HRT of 0.5 day and organic loading rate of 67 g COD/L/day. Coulombic efficiency (CE) decreased from 57 % at feed COD concentration of 1 g/L to less than 1 % when feed COD concentration was 50 g/L. Increase in OLR resulted in increase in power output but decrease in CE.  相似文献   

17.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

18.
In the present study possibility of coupling stripper to remove ammonia to the UASB reactor treating poultry litter leachate was studied to enhance the overall performance of the reactor. UASB reactor with stripper as ammonia inhibition control mechanism exhibited better performance in terms of COD reduction (96%), methane yield (0.26m(3)CH(4)/kg COD reduced), organic loading rate (OLR) (18.5kg COD m(-3)day(-1)) and Hydraulic residence time (HRT) (12h) compared to the UASB reactor without stripper (COD reduction: 92%; methane yield: 0.21m(3)CH(4)/kg COD reduced; OLR: 13.6kg CODm(-3)day(-1); HRT: 16h). The improved performance was due to the reduction of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) in the range of 75-95% and 80-95%, respectively by the use of stripper. G/L (air flow rate/poultry leachate flow rate) in the range of 60-70 and HRT in the range of 7-9min are found to be optimum parameters for the operation of the stripper.  相似文献   

19.
Lim SJ  Fox P 《Bioresource technology》2011,102(4):3724-3729
A static granular bed reactor (SGBR) was used to treat swine wastewater at 24 and 16 °C. At 24 °C, the organic loading rate (OLR) was 0.7-5.4 kg COD/m3 day and the average chemical oxygen demand (COD) removal efficiency was 88.5%, respectively. Meanwhile, at 16 °C, the OLR was 1.6-4.0 kg COD/m3 day and the average COD removal efficiency was 68.0%, respectively. The SGBR acted as a bioreactor as well as a biofilter. After backwashing, the recovery of COD removal was not a function of an OLR but recovery time, while that of TSS removal was not a function of either recovery time or the OLR. The maximum substrate utilization rate (kmax) ratio was 1.89 between 24 and 16 °C, and the half velocity constant (Ks) ratio was 1.22, and the maximum specific growth rate (μmax) ratio was 4.71. In addition, the temperature-activity coefficient in this study was determined to be 1.09.  相似文献   

20.
Abstract

Laboratory-scale anaerobic-aerobic fluidized-bed bioreactors (FBR) with porous magnetic ceramics as support were successfully applied to treat purified terephthalic acid (PTA) wastewater. After a short 14-day start-up period, the system was stably operating. During the 40?d stable period, the system organic loading rate (OLR) increased from 6.68 to 23.87?kg chemical oxygen demand (COD)/(m3d), the effluent COD and PTA were below 90 and 30?mg/L, respectively. The FBR presented excellent COD and PTA removal efficiency with a low hydraulic retention time (HRT) value of six hours. The growth kinetic parameters suggested that the biomass in FBR possess high maximum specific growth rate (μmax?=?2.22?d?1) and good tolerance to varied OLR (Ks?=?258.67?mg COD/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号