首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The actions of the intercostal and paraspinal muscles in stabilizing the human upper rib cage have been analyzed using a geometrically realistic mathematical model of the first six ribs, vertebrae, and associated musculature. The model suggests roles of the deep layers of erector spinae in stabilizing the vertebral column so that it can support the loads placed upon it by the ribs under physiological load. If we assume that the tension exerted by an intercostal muscle is proportional to its local thickness, the model predicts that the observed distribution of intercostal thickness is close to that which minimizes the stresses in ribs when the model is subjected to peak physiological load. The observed shape of the ribs are optimal to withstand the calculated pattern of loading along their length. These calculations raise the hypothesis that the arrangement of intercostal musculature and rib geometry result in an optimally light rib cage, which is capable of withstanding the loads placed upon it. The analysis of the mechanics of the entire model indicates that the geometrical simplifications made in Hamberger's model are not valid when applied to the rib cage.  相似文献   

2.
大熊猫的脊柱和胸廓   总被引:2,自引:2,他引:0  
大熊猫Ailuropoda melanoleuca(David)是我国特有的珍稀动物。关于它的骨学研究,前人的报道多限于头骨和四肢骨,对头骨以外的中轴骨--脊柱和胸廓--则很少涉及,仅Davis(1964)的著作中包括这部分骨学内容,但标本数量较少,且无幼体标本。我们用完整骨骼6例(包括1例幼体)进行了较系统的观察,并和黑熊Sele-narctos thibetanus的成体和幼体、小熊猫Ailurus fulgens、犬Canis familiaris、虎Panthera tigris、狮Panthera leo、云豹Neofelis nebulosa等其他食肉目兽类加以对比,以显示出大熊猫的特点。  相似文献   

3.
Differentiation of the axial skeleton into distinct regions, once thought to be characteristic of the Tetrapoda, also occurs in the actinopterygian Danio rerio. In these taxa, the boundary between the cervical-thoracic regions correlates with Hoxc6 expression and morphological features such as position of the pectoral fin and associated nerves, and the absence of ribs. In the lungfish Neoceratodus, a member of the extant sister taxon to the Tetrapoda, the first vertebral element to chondrify is situated well posterior to the skull, developing from somites 6 and 7 (6/7) and associated with an enlarged cranial rib and nerves innervating the pectoral fin. Two vertebral elements develop later and more anteriorly, associated with somites 4/5 and 5/6. These three elements become incorporated into the occipital region of the skull during Neoceratodus ontogeny, until the cranial rib itself articulates to the rear of the skull. These features of early development indicate a regionalization of the Neoceratodus vertebral column: the cranial rib marks the boundary between the cervical and thoracic regions, the two more anterior vertebrae lacking ribs represent the cervical region, while somites 1-4 (cranial half), lacking any vertebral development, represent the occipital region. However, the cervical region of the vertebral column is effectively lost during ontogeny of Neoceratodus. A recognizable cervical region in the tetrapod vertebral column, as in zebrafish, suggests that cervical vertebrae are not incorporated into the skull but maintained as distinct elements of the column, representing an important shift in relative developmental timing and the influence of heterochrony in this region during the fish-tetrapod transition.  相似文献   

4.
The pygmy right whale, Caperea marginata, is a rare mysticete cetacean with an unusual suite of axial skeletal characters. Distally expanded first ribs, a long thorax with broadly overlapping vertebral transverse processes, plate‐like posterior ribs, and a short tail contrast with other cetaceans and suggest unique developmental patterning. Twenty‐four individuals of diverse ontogenetic age were available for analysis. Multiple, variable examples of incomplete rib fusion in dependent calves indicate that the first rib of adults is an ontogenetic fusion product of ribs 1 and 2. The composite rib articulates by way of its anterior (Rib1) component to the sternum and by way of its posterior (Rib2) component with thoracic vertebra 2. Thoracic vertebra 1 lacks rib articulations. When rib fusion is taken into account, the most frequent column formulas are C7T18L1Cd16–17 = 42–43 and C7T17L1Cd16–18 = 41–43. Thoracic and lumbar series are not reciprocal in count, arguing against their developmental linkage. Instead, parallel reduction in both lumbar and caudal counts supports the existence of neocete patterning in Caperea, as in all other living cetaceans. Ontogenetic vertebral column elongation is most marked in the posterior thorax, lumbos, and anterior tail. Vertebrae in these column regions are excellent predictors of total body length.  相似文献   

5.
6.
In vivo visceral and skeletal kinematics of lung ventilation was examined using cineradiography in two palaeognaths, the emu (Dromaius novaehollandiae) and the Chilean tinamou (Nothoprocta perdicaria), and a basal neognath, the helmeted guinea fowl (Numida meleagris). Upon inspiration, the thorax expands in all dimensions. The vertebral ribs swing forward and upward, thereby increasing the transverse diameter of the trunk. The consistent location of the parapophysis throughout the dorsal vertebral series, ventral and cranial to the diapophysis, ensures a relatively uniform lateral expansion. An increase in the angle between the vertebral and the sternal ribs causes the sternal ribs to push the sternum ventrally. Owing to the greater length of the caudal sternal ribs, the caudal sternal margin is displaced further ventrally than the cranial sternal margin. When observed in lateral view, sternal movement is not linear, but elliptical. The avian thorax is highly constrained in its movement when compared with crocodylians, the other extant archosaur clade. Birds lack a lumbar region and intermediate ribs. Sternal ribs are completely ossified, and have a bicondylar articulation with the sternum. Considering the importance of pressure differences between cranial and caudal air sac complexes for the generation of unidirectional air flow in the avian lung, it is hypothesized that a decrease in the degrees of freedom of movement of the avian trunk skeleton, greater expansion of the ventrocaudal trunk region, and elliptical sternal movement may represent specific adaptations for fine-tuned control over air flow within the complex avian pulmonary system.  相似文献   

7.
Within the ray-finned fishes, eel-like (extremely elongate) body forms have evolved multiple times from deeper-bodied forms. Previous studies have shown that elongation of the vertebral column may be associated with an increase in the number of vertebrae, an increase in the length of the vertebral centra, or a combination of both. Because the vertebral column of fishes has at least two anatomically distinct regions (i.e. abdominal and caudal), an increase in the number and relative length of the vertebrae could be region-specific or occur globally across the length of the vertebral column. In the present study, we recorded vertebral counts and measurements of vertebral aspect ratio (vertebral length/width) from museum specimens for 54 species representing seven groups of actinopterygian fishes. We also collected, from published literature, vertebral counts for 813 species from 14 orders of actinopterygian and elasmobranch fishes. We found that the number of vertebrae can increase independently in the abdominal and caudal regions of the vertebral column, but changes in aspect ratio occur similarly in both regions. These findings suggest that abdominal vertebral number, caudal vertebral number, and vertebral aspect ratio are controlled by separate developmental modules. Based on these findings, we suggest some candidate developmental mechanisms that may contribute to vertebral column patterning in fishes. Our study is an example of how comparative anatomical studies of adults can generate testable hypotheses of evolutionary changes in developmental mechanisms.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 97–116.  相似文献   

8.
Regional variation in the vertebral column of several species of salamanders (families Ambystomatidae, Salamandridae and Plethodontidae) is analyzed. Measurements of three dimensions, centrum length, prezygapophyseal width, and transverse process length, provide the data. Ontogenetic, interspecific, intergeneric and interfamilial patterns of positional variation are diagrammed and discussed. Distinctive patterns of variation characterize the families, genera, and to a lesser extent, the species. The patterns of ambystomatid salamanders are the most generalized, and probably reflect derivation from a primitive ancestral stock. The most specialized conditions occur in the fully terrestrial plethodontids, a group generally considered to be highly derived. Data such as those presented here will aid in the identification of fossils. The patterns described have functional significance. For example, species which have an aquatic larval stage and which return to aquatic breeding sites have vertebrae which taper in length and width behind the pelvis. This is a feature associated with production of a traveling wave in the tail which is necessary for propulsion in water. Fully terrestrial species do not have a tapering column. In them, standing waves, such as occur in the trunk region of all species, typically occur in the tail. The caudal vertebrae of terrestrial species are rather uniform in dimensions for some distance, and the tail is cylindrical in form. Other functionally important features include the narrowing and shortening of some anterior vertebrae, associated with the development of a neck in some species with tongue feeding mechanisms. In contrast, species which use their heads as wedges during locomotion have broadened anterior vertebrae which serve as sites of origin for hypertrophied neck muscles.  相似文献   

9.
In primates, tail length is subject to wide variation, and the tail may even be absent. Tail length varies greatly between each species group of the genus Macaca, which is explained by climatic factors and/or phylogeographic history. Here, tail length variability was studied in hybrids of the Japanese (M. fuscata) and Taiwanese (Macaca cyclopis) macaque, with various degrees of hybridization being evaluated through autosomal allele typing. Relative tail length (percent of crown–rump length) correlated well with the number of caudal vertebrae. Length profiles of caudal vertebrae of hybrids and parent species revealed a common pattern: the length of several proximal-most vertebrae do not differ greatly; then from the third or fourth vertebra, the length rapidly increases and peaks at around the fifth to seventh vertebra; then the length plateaus for several vertebrae and finally shows a gentle decrease. As the number of caudal vertebrae and relative tail length increase, peak vertebral length and lengths of proximal vertebrae also increase, except that of the first vertebra, which only shows a slight increase. Peak vertebral length and the number of caudal vertebrae explained 92?% of the variance in the relative tail length of hybrids. Relative tail length correlated considerably well with the degree of hybridization, with no significant deviation from the regression line being observed. Thus, neither significant heterosis nor hybrid depression occurred.  相似文献   

10.
While a relatively broad thorax and strongly curved ribs are widely regarded as common features of living hominoids, few studies have quantitatively examined these traits by methods other than calculating the chest index. The present study aims to quantify variations in thoracic cage morphology for living anthropoids. The odd-numbered ribs (first to eleventh) were articulated with the corresponding vertebrae and the cranial and lateral views subsequently photographed. Rib profiles were digitized in both views and line-fitted by a Bézier curve to create a three-dimensional morphological data set. When thoracic cage width was scaled against body mass, Hylobates (and possibly Pongo) plotted above non-hominoid anthropoids at almost all rib levels, while Pan did not differ from non-hominoid anthropoids. The overall pattern of the normalized thoracic width differed between Hylobates and other hominoids. In Hylobates, an upward convex curve was seen between the first and seventh ribs while a more linear pattern was observed in Pan and Pongo. This result quantitatively confirmed that the barrel-shaped thoracic cage in Hylobates can be distinguished from the funnel-shaped form in other hominoids. Conversely, all hominoids shared two distinct features in the upper half-thorax: (1) a pronounced dorsal protrusion of the proximal part of the rib in accordance with ventral displacement of the thoracic spine and (2) a relatively medially projecting sternal end. Although these features are likely to provide some mechanical advantage in orthograde and/or suspensory positional behaviors, they were barely present in the suspensory Ateles. An erratum to this article can be found at  相似文献   

11.
Video records of swimming water snakes show that during moderate to rapid swimming, the rear half to two-thirds of the trunk is compressed laterally, approaching the body form of some sea snakes. Body form of swimming snakes differed significantly from their shape when resting on a flat surface or when anesthetized and suspended in water. The extent of lateral flattening is positively correlated with swimming speed, a relationship generally supported by tests of trunk models in a flow tank. In Nerodia, the ability to temporarily flatten the trunk depends on kinetic costovertebral joints, a large compressible body cavity, and the absence of ventral skeletal support - features found in most snakes. Histological studies and manipulations of partially dissected preserved specimens showed that the resting angle of the ribs is maintained by localized elastic hypertrophy of the costovertebral capsular ligament. Trunk form during swimming in Nerodia is proposed to arise from anteromedial movement of the distal rib powered by deep muscles acting in concert with those proposed to generate undulation of the vertebral column.  相似文献   

12.
记述了产自四川自贡大山铺中侏罗世峨眉龙属一新种——焦氏峨眉龙(Omeisaurus jiaoisp.nov.)。新种为大型蜥脚类恐龙,以如下特征区别于其他蜥脚类:前、中部背椎为典型的后凹型,后部背椎为双平型,背椎神经棘呈高大棒状,不分叉;尾椎为弱双凹型,第一尾椎不具扇形尾肋;第一脉弧短小且与第一尾椎关联;锁骨长大;肱骨和股骨细长而圆实;肱骨与股骨长度之比为0.83,尺骨与肱骨长度之比为0.72,胫骨与股骨长度之比为0.63。  相似文献   

13.
General doctrine holds that early hominids possessed a long lumbar spine with six segments. This is mainly based on Robinson's (1972) interpretation of a single partial Australopithecus africanus skeleton, Sts 14, from Sterkfontein, South Africa. As its sixth last presacral vertebra exhibits both thoracic and lumbar characteristics, current definitions of lumbar vertebrae and lumbar ribs are discussed in the present study. A re-analysis of its entire preserved vertebral column and comparison with Stw 431, another partial A. africanus skeleton from Sterkfontein, and the Homo erectus skeleton KNM-WT 15000 from Nariokotome, Kenya, did not provide strong evidence for the presence of six lumbar vertebrae in either of these early hominids. Thus, in Sts 14 the sixth last presacral vertebra has on one side a movable rib. In Stw 431, the corresponding vertebra shows indications for a rib facet. In KNM-WT, 15000 the same element is very fragmentary, but the neighbouring vertebrae do not support the view that it is L1. Although in all three fossils the transitional vertebra at which the articular facets change orientation seems to be at Th11, this is equal to a large percentage of modern humans. Indeed, a modal number of five lumbar vertebrae, as in modern humans, is more compatible with evolutionary principles. For example, six lumbar vertebrae would require repetitive shortening and lengthening not only of the lumbar, but also of the entire precaudal spine. Furthermore, six lumbar vertebrae are claimed to be biomechanically advantageous for early hominid bipedalism, yet an explanation is lacking as to why the lumbar region should have shortened in later humans. All this raises doubts about previous conclusions for the presence of six lumbar vertebrae in early hominids. The most parsimonious explanation is that they did not differ from modern humans in the segmentation of the vertebral column.  相似文献   

14.
A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, "supraneural," and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal "supraneural." Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle "supraneural", and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or "supraneural." They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.  相似文献   

15.
The vertebral column of the Atlantic white-sided dolphin, Lagenorhynchus acutus , reflects the radical reorganization of the cetacean column for locomotion in water. Both posterior thoracic and anterior caudal vertebrae have been "lumbarized," and discontinuities occur within the caudal series at the synclinal point and fluke base. Morphology changes subtly as body size increases. Neural process height increases more rapidly, and centrum length more variably, than other vertebral parameters. As a result, large animals have disproportionately tall neural processes, short necks, long mid-body regions, and short flukes. Vertebral columns of large animals also show greater complexity (range, irregularity, and polarization) of centrum length than do those of smaller animals. Comparisons among dolphins reveal that complexity trends with respect to differentiation of parts run counter to the trend with respect to number of parts, a relationship predicted by Williston in 1914.  相似文献   

16.
贵州中三叠世长颈龙属(原龙目:长颈龙科)一幼年个体   总被引:1,自引:1,他引:1  
记述了贵州兴义法郎组竹杆坡段(中三叠世拉丁期)长颈龙属未定种(Tanystropheus sp.)一幼年个体的不完整骨架。这是该属在欧洲和中东以外的首次发现。新材料仅保存部分颈椎、躯干和前肢。根据特殊的颈椎形态将该标本归入长颈龙属,而区别于另一种长颈的海生原龙类———东方恐头龙(Dinocephalosaurus orientalis)。新标本的腕骨形态简单,骨化程度弱,表明长颈龙是终生水生的动物。“长颈、长颈肋”见于多种不同海生爬行动物(如原龙类、初龙类),它们很可能都以“吞吸”的方式捕食。长颈龙化石在我国的发现进一步验证了中国南方三叠纪海生爬行动物群与欧洲西特提斯动物群(western Tethyan fauna)之间的密切关系。  相似文献   

17.
The vertebral column of fishes has traditionally been divided into just two distinct regions, abdominal and caudal. Recently, however, developmental, morphological, and mechanical investigations have brought this traditional regionalization scheme into question. Alternative regionalization schema advocate the division of the abdominal vertebrae into cervical, abdominal, and in some cases, transitional regions. Here, we investigate regional variation at the level of the vertebrae and intervertebral joint (IVJ) tissues in the striped bass, Morone saxatilis. We use gross dissection, histology, and polarized light imaging to quantify vertebral height, width, length, IVJ length, IVJ tissue volume and cross‐sectional area, and vertical septum fiber populations, and angles of insertion. Our results reveal regional differences between the first four (most rostral) abdominal vertebrae and IVJs and the next six abdominal vertebrae and IVJs, supporting the recognition of a distinct cervical region. We found significant variation in vertebral length, width, and height from cranial to caudal. In addition, we see a significant decline in the volume of notochordal cells and the cross‐sectional area of the fibrous sheath from cranial to caudal. Further, polarized light imaging revealed four distinct fiber populations within the vertical septum in the cervical and abdominal regions in contrast with just one fiber population found in the caudal region. Measurement of the insertion angles of these fiber populations revealed significant differences between the cervical and abdominal regions. Differences in vertebral, IVJ, and vertical septum morphology all predict greater range of motion and decreased stiffness in the caudal region of the fish compared with the cervical and abdominal regions. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
S L Beck 《Teratology》1989,40(4):365-374
Following exposure to bromodeoxyuridine (BUDR), acetazolamide (ACZM), trypan blue (TRBL), cortisone (CORT), or diphenylhydantoin (DPH), alizarin-stained, cleared fetuses were examined at 18 days postcoitus for unossified cervical vertebral centra; number of ossified caudal vertebrae; number of ribs; and ossification of sternebrae, metatarsals, metacarpals, and phalangeal rows. At all teratogenic doses, in no vehicle-treated groups, and rarely in lower-dose groups, there were significant increases in frequency of unossified cervical centra, the first vertebra (C1) being most often affected, and C7 least often affected. In the high-dose CORT group, there was a significant correlation between unossified C1 and cleft palate. No association between abnormality and reduced ossification of cervical vertebrae was seen in other series examined, nor was there any correlation between litter size and abnormality. With minor complications, the number of ossified caudal vertebrae was significantly reduced after exposure at teratogenic dose levels to all compounds except DPH. Although caudal and cervical ossification were correlated with each other in those series examined, neither was correlated with abnormality. Frequency of 14 ribs was increased in BUDR, ACZM, and TRBL but not CORT or DPH. Other parameters were essentially unaffected. Significantly increased frequency of abnormality, when contrasted with untreated or vehicle-treated groups, was seen at high-dose levels in all but DPH treatments, and mortality was increased in ACZM D9-11, TRBL, and CORT. These studies show that reduced ossification of cervical centra is an excellent indicator of prenatal exposure to noxious substances, and caudal vertebrae appear to be useful as well. Increased frequency of 14 ribs occurred for all strong teratogens utilized if they were administered on day 7 or day 8 postcoitus.  相似文献   

19.
A nearly complete skeleton of a juvenile sauropod from the Lower Morrison Formation (Late Jurassic, Kimmeridgian) of the Howe Ranch in Bighorn County, Wyoming is described. The specimen consists of articulated mid-cervical to mid-caudal vertebrae and most appendicular bones, but cranial and mandibular elements are missing. The shoulder height is approximately 67 cm, and the total body length is estimated to be less than 200 cm. Besides the body size, the following morphological features indicate that this specimen is an early juvenile; (1) unfused centra and neural arches in presacral, sacral and first to ninth caudal vertebrae, (2) unfused coracoid and scapula, (3) open coracoid foramen, and (4) relatively smooth articular surfaces on the limb, wrist, and ankle bones. A large scapula, short neck and tail and elongate forelimb bones relative to overall body size demonstrate relative growth. A thin-section of the mid-shaft of a femur shows a lack of annual growth lines, indicating an early juvenile individual possibly younger than a few years old. Pneumatic structures in the vertebral column of the specimen SMA 0009 show that pneumatisation of the postcranial skeleton had already started in this individual, giving new insights in the early ontogenetic development of vertebral pneumaticity in sauropods.

The specimen exhibits a number of diplodocid features (e.g., very elongate slender scapular blade with a gradually dorsoventrally expanded distal end, a total of nine dorsal vertebrae, presence of the posterior centroparapophyseal lamina in the posterior dorsal vertebrae). Although a few diplodocid taxa, Diplodocus, cf. Apatosaurus, and cf. Barosaurus, are known from several fossil sites near the Howe Ranch, identification of this specimen, even at a generic level, is difficult due to a large degree of ontogenetic variation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号