首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
刘志伟  张晨  郭勇 《生物技术》2004,14(2):11-13
为了实现转基因鱼腥藻培养生产TMF的目的,讲究了转基因鱼腥藻的稳定性。影印法证实转TNF-α。基因鱼腥藻7120能保持质粒分配稳定性。比较无选择压力下连续传代的转丛因鱼醒藻7120在不同培养基中的生长和外源基因表达,证实没有发生质粒部分缺失,但转基因鱼腥藻在无选择压力下会降低重组质粒拷贝数。在培养过程中,种子培养越含有的新霉素可以保持生产过程质粒稳定,这可以大火减少新霉素用量。  相似文献   

2.
The pathway from beta-carotene to astaxanthin is a crucial step in the synthesis of astaxanthin, a red antioxidative ketocarotenoid that confers beneficial effects on human health. Two enzymes, a beta-carotene ketolase (carotenoid 4,4'-oxygenase) and a beta-carotene hydroxylase (carotenoid 3,3'-hydroxylase), are involved in this pathway. Cyanobacteria are known to utilize the carotenoid ketolase CrtW and/or CrtO, and the carotenoid hydroxylase CrtR. Here, we compared the catalytic functions of CrtW ketolases, which originated from Gloeobacter violaceus PCC 7421, Anabaena (also known as Nostoc) sp. PCC 7120 and Nostoc punctiforme PCC 73102, and CrtR from Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and Anabaena variabilis ATCC 29413 by complementation analysis using recombinant Escherichia coli cells that synthesized various carotenoid substrates. The results demonstrated that the CrtW proteins derived from Anabaena sp. PCC 7120 as well as N. punctiforme PCC 73102 (CrtW148) can convert not only beta-carotene but also zeaxanthin into their 4,4'-ketolated products, canthaxanthin and astaxanthin, respectively. In contrast, the Anabaena CrtR enzymes were very poor in accepting either beta-carotene or canthaxanthin as substrates. By comparison, the Synechocystis sp. PCC 6803 CrtR converted beta-carotene into zeaxanthin efficiently. We could assign the catalytic functions of the gene products involved in ketocarotenoid biosynthetic pathways in Synechocystis sp. PCC 6803, Anabaena sp. PCC 7120 and N. punctiforme PCC 73102, based on the present and previous findings. This explains why these cyanobacteria cannot produce astaxanthin and why only Synechocystis sp. PCC 6803 can produce zeaxanthin.  相似文献   

3.
Huang W  Wu QY 《Biotechnology letters》2004,26(18):1397-1401
A computational search was carried out to identify additional binding sites for the manganese response regulator, ManR, in the genome of Anabaena sp. PCC 7120. This approach predicted ManR binding sites: the promoter regions of the genes of all3575-alr3576 and the gene of alr5134 from Anabaena sp. PCC 7120. Electrophoretic mobility shift assays confirmed that the ManR of Anabaena sp. PCC 7120 specifically bound to the promoter regions of all3575-alr3576 and alr5134.  相似文献   

4.
Two open reading frames (ORFs), alr0295 and alr2325, are found to encode putative cAMP receptor proteins (CRPs) in the genome of the filamentous cyanobacterium Anabaena sp. PCC 7120. These ORFs were named cAMP receptor protein-like gene A in Anabaena sp. PCC 7120 (ancrpA) and cAMP receptor protein-like gene B in Anabaena sp. PCC 7120 (ancrpB), respectively, and those translated products were investigated. The equilibrium dialysis measurements revealed that AnCrpA bound with cAMP specifically, while AnCrpB bound with both cAMP and cGMP, though the affinity for cGMP was weak. The binding affinity for cAMP of AnCrpA showed the lowest dissociation constant, approximately 0.8 microM, among bacterial CRPs. A gel mobility shift assay elucidated that AnCrpA and AnCrpB formed a complex with the consensus DNA sequence in the presence of cAMP, although AnCrpB did not have ordinary DNA-binding motifs.  相似文献   

5.
以能分化异形胞的蓝细菌(Anabaenasp.PCC7120)为材料,采用重组PCR在体外对控制DNA复制起始的dnaA基因进行定点突变后克隆到整合质粒中,再通过三亲本杂交将整合质粒转移到Anabaena PCC7120中,以分离和筛选温度敏感型突变体。结果成功获得Anabaena PCC 7120 dnaA高温敏感性突变体。研究表明,利用重组PCR技术可在体外实现对Anabaena PCC 7120的dnaA的定点突变,并可通过同源重组双交换成功实行整合质粒中突变基因对野生型基因的置换,使突变基因插入到细胞染色体中,进而成功构建温度敏感型突变菌株。  相似文献   

6.
张晨  刘志伟  郭勇 《生物技术》2003,13(4):27-29
为了进一步探索转基因鱼腥藻高密度培养的方法,在小型气升式反应器中研究了CO2对转基因鱼腥藻7120培养的影响。结果发现转基因鱼腥藻培养过程中通入5% CO2能促进藻细胞生长,12d生物量提高7.44%,由于光照限制,不能大幅提高15d收获生物量,但生长周期能缩短近20%;而高浓度(10%)的CO2抑制转基因鱼腥藻的生长。CO2是通过调节pH值和影响碳源利用来影响藻细胞生长的,合适浓度的CO2有利于转基因鱼腥藻的培养。  相似文献   

7.
The heterocystous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120 displayed two superoxide dismutase (SOD) activities, namely FeSOD and MnSOD. Prolonged exposure of Anabaena PCC7120 cells to methyl viologen mediated oxidative stress resulted in loss of both SOD activities and induced cell lysis. The two SOD proteins were individually overexpressed constitutively in Anabaena PCC7120, by genetic manipulation. Under nitrogen-fixing conditions, overexpression of MnSOD (sodA) enhanced oxidative stress tolerance, while FeSOD (sodB) overexpression was detrimental. Under nitrogen supplemented conditions, overexpression of either SOD protein, especially FeSOD, conferred significant tolerance against oxidative stress. The results demonstrate a nitrogen status-dependent protective role of individual superoxide dismutases in Anabaena PCC7120 during oxidative stress.  相似文献   

8.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

9.
Anabaena sp. PCC 7120 is a cyanobacterium capable of performing several important biological functions: photosynthesis, nitrogen fixation, cell differentiation, cell-cell communication, etc. These activities require an extensive signaling capability in order to respond to the changing environment. Based on the genomic data, we have retrieved several gene families encoding signaling components. It is estimated that 211 genes encode two-component signaling elements, and 66 genes encode Ser/Thr kinases and phosphatases. These genes together represent 4.2% of the coding capacity of the whole genome, making Anabaena PCC 7120 a leading member among prokaryotes in terms of its signaling potential. It is known that two-component systems are composed of a few basic modules that can arrange into different structures best adapted for each signaling system. Many proteins in Anabaena PCC 7120 have incorporated both modules of two-component systems and catalytic domains of either Ser/Thr kinases or phosphatases. A family of 13 genes encode proteins with both a Ser/Thr kinase domain and a His kinase domain, and another four genes were also found whose products have both a response regulator domain and a Ser/Thr phosphatase domain. Of all the signaling proteins in Anabaena PCC 7120, about one third (35%) are conserved in the genome of the unicellular cyanobacterium strain Synechocystis sp. PCC 6803. Interestingly, one subfamily of His kinases and two subfamilies of response regulators are found in Anabaena PCC 7120 but are absent in Synechocystis PCC 6803. This study constitutes a basis for analyses of signal transduction in Anabaena PCC 7120 using functional genomic approaches.  相似文献   

10.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

11.
以鱼腥藻为材料,研究了外源Ca^2 对模拟微重力环境中微藻细胞膜透性的影响。实验结果表明:提高培养基中的Ca^2 浓度可减轻由模拟微重力造成的膜透性增大,有助于稳定细胞膜结构和功能。同时,外源Ca^2 降低了藻细胞光系统Ⅱ(PSⅡ)的光化学效率(以荧光参数Fv/Fm 表示)下降的由度,表明外源Ca^2 对模拟微生重力环境下鱼腥藻细胞光合作用的损伤,有良好的防护效应。  相似文献   

12.
Superoxide dismutase (Sod) plays an important role in all aerobic organisms. The sodB gene of a heterocystous cyanobacterium Anabaena sp. PCC 7120 was cloned and sequenced. The Sod protein is predicted to have 199 amino acids and a molecular mass of 22.5 kDa. Sequence comparison among SodB from cyanobacteria and chloroplasts revealed that the sodB gene indeed encodes an iron-Sod. Northern blot analysis showed that the sodB gene of Anabaena sp. PCC 7120 is transcribed as a single gene and its expression was up-regulated when the cells were subjected to a shift from a nitrogen repletion condition to a nitrogen depletion condition.  相似文献   

13.
鱼腥藻7120遗传转化的研究进展   总被引:1,自引:0,他引:1  
鱼腥藻7120作为模式生物被广泛用于光合、固氮、进化、代谢等基本生命现象的研究。近几年, 对其基因工程的研究使人们看到它在医药、环保、能源等方面的应用潜力, 但表达效率低是其发展的瓶颈。为了提高其表达效率, 研究者从鱼腥藻7120的载体(包括启动子、复制子、选择标记基因等)的改进、目的基因的优化(密码子和SD序列)、宿主的改善、转化方法的改变等方面进行了大量探索, 除了用于功能基因的研究, 已经有几十个外源基因在鱼腥藻7120中表达。除了研究载体, 诱变鱼腥藻7120形成有利于外源基因表达的突变体和摸索转基因蓝藻最佳生长条件和表达条件, 可能是新的发展方向。  相似文献   

14.
Heme is an iron-containing cofactor that aside from serving as the active group of essential proteins is a key element in the control of many molecular and cellular processes. In prokaryotes, the family of Fur (ferric uptake regulator) proteins governs processes essential for the survival of microorganims such as the iron homeostasis. We show that purified recombinant FurA from Anabaena sp. PCC 7120 interacts strongly with heme in the micromolar range and this interaction affects the in vitro ability of FurA to bind DNA, inhibiting that process in a concentration-dependent fashion. Our results provide the first evidence of the possible involvement of heme in the regulatory function of cyanobacterial Fur.  相似文献   

15.
A family of specific cloning vectors was constructed to express in the cyanobacterium Anabaena sp. PCC7120 recombinant C-phycocyanin subunits with one or more different tags, including the 6xHis tag, oligomerization domains, and the streptavidin-binding Strep2 tag. Such tagged alpha or beta subunits of Anabaena sp. PCC7120 C-phycocyanin formed stoichiometric complexes in vivo with appropriate wild-type subunits to give constructs with the appropriate oligomerization state and normal posttranslational modifications and with spectroscopic properties very similar to those of unmodified phycocyanin. All of these constructs were incorporated in vivo into the rod substructures of the light-harvesting complex, the phycobilisome. The C-terminal 114-residue portion of the Anabaena sp. PCC7120 biotin carboxyl carrier protein (BCCP114) was cloned and overexpressed and was biotinylated up to 20% in Escherichia coli and 40% in wild-type Anabaena sp. His-tagged phycocyanin beta--BCCP114 constructs expressed in Anabaena sp. were >30% biotinylated. In such recombinant phycocyanins equipped with stable trimerization domains, >75% of the fusion protein was specifically bound to streptavidin- or avidin-coated beads. Thus, the methods described here achieve in vivo production of stable oligomeric phycobiliprotein constructs equipped with affinity purification tags and biospecific recognition domains usable as fluorescent labels without further chemical manipulation.  相似文献   

16.
When recombinant plasmids that were transferred to the cyanobacterium Anabaena sp. strain M-131 were transferred back to Escherichia coli, some of the transformants contained inserts. One of the insertion sequences (ISs) was characterized by sequencing. This 1,351-base-pair IS contained an open reading frame that was capable of encoding a peptide of 310 amino acids and had terminal sequences with distinctive structures, but it lacked terminal inverted repeats and did not duplicate target DNA upon insertion. The element bore no significant sequence homology to any sequence stored in the GenBank data base. Restriction analysis of the genomes of Anabaena sp. strain M-131 and Anabaena sp. strain PCC 7120 showed those strains to be closely related. Sequences homologous to the IS element were also present in the DNA of Anabaena strain PCC 7120, but the copy numbers and chromosomal locations of such sequences differed in the two strains. The largest visualized plasmid was 425 kilobases (kb) in M-131 and 410 kb in PCC 7120; at least the former plasmid contained multiple copies of the element, as did a 115-kb plasmid in M-131.  相似文献   

17.
18.
Genes for two subunits of acetyl-coenzyme A carboxylase, biotin carboxylase and biotin carboxyl carrier protein, have been cloned from Anabaena sp. strain PCC 7120. The two proteins are 181 and 447 amino acids long and show 40 and 57% identity to the corresponding Escherichia coli proteins, respectively. The sequence of the biotinylation site in Anabaena sp. strain PCC 7120 is MetLysLeu, not the MetLysMet found in other sequences of biotin-dependent carboxylases. The amino acid sequence of biotin carboxylase is also very similar (32 to 47% identity) to the sequence of the biotin carboxylase domain of other biotin-dependent carboxylases. Genes for these two subunits of acetyl-coenzyme A carboxylase are not linked in Anabaena sp. strain PCC 7120, contrary to the situation in E. coli, in which they are in one operon.  相似文献   

19.
Structural studies of biomolecules using nuclear magnetic resonance (NMR) rely on the availability of samples enriched in (13)C and (15)N isotopes. While (13)C/(15)N-labeled proteins are generally obtained by overexpression in transformed Escherichia coli cells cultured in the presence of an expensive mixture of labeled precursors, those of the photoautotrophic cyanobacterium Anabaena sp. PCC 7120 can be uniformly labeled by growing them in medium containing Na(15)NO(3) and NaH(13)CO(3) as the sole nitrogen and carbon sources. We report here a novel vector-host system suitable for the efficient preparation of uniformly (13)C/(15)N-labeled proteins in Anabaena sp. PCC 7120. The 24-kDa N-terminal domain of the E. coli gyrase B subunit, used as a test protein, was cloned into the pRL25C shuttle vector under the control of the tac promoter. The transformed Anabaena cells were grown in the presence of the labeled mineral salts and culture conditions were optimized to obtain over 90% of (13)C and (15)N enrichment in the constitutively expressed 24-kDa polypeptide. The yield of purified 24-kDa protein after dual isotope labeling under anaerobic conditions was similar to that obtained with E. coli cells bearing a comparable expression vector and cultured in parallel in a commercially available labeling medium. Furthermore, as probed by NMR spectroscopy and mass spectrometry, the 24-kDa N-terminal domain expressed in Anabaena was identical to the E. coli sample, demonstrating that it was of sufficient quality for 3D-structure determination. Because the Anabaena system was far more advantageous taking into consideration the expense for the labels that were necessary, these results indicate that Anabaena sp. PCC 7120 is an economic alternative for the (13)C/(15)N-labeling of soluble recombinant proteins destined for structural studies.  相似文献   

20.
Probes carrying the Anabaena sp. strain PCC 7120 nitrogenase reductase (nifH) and nitrogenase (nifK and nifD) genes were hybridized to Southern blots of DNA from the unicellular, aerobic nitrogen-fixing cyanobacterium Gloeothece sp. strain PCC 6909 and from the filamentous cyanobacterium Calothrix sp. strain PCC 7601. These data suggest that the Gloeothece sp. nif structural proteins must be similar to those of other diazotrophs and that the ability for aerobic nitrogen fixation does not reside in the nif protein complex. We also found that the nif structural genes of Gloeothece sp. are clustered, whereas those of Calothrix sp. are arranged more like those of Anabaena sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号