首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cell immobilization is one of the common techniques for increasing the overall cell concentration and productivity. Bacillus amyloliquefaciens MBL27 cells were immobilized in calcium alginate beads and it is a promising method for repeated AMP (antimicrobial protein) production. The present study aimed at determining the optimal conditions for immobilization of B. amyloliquefaciens MBL27 cells in calcium alginate beads and the operational stability for enhanced production of the AMP. AMP production with free and immobilized cells was also done. In batch fermentation, maximum AMP production (7300 AU (arbitrary units)/ml against Staphylococcus aureus) was obtained with immobilized cells in shake flasks under optimized parameters such as 3% (w/v) sodium alginate, 136?mM CaCl2 with 350 alginate beads/flask of 2.7-3.0?mm diameter. In repeated cultivation, the highest activity was obtained after the second cycle of use and approx. 94% production was noted up to the fifth cycle. The immobilized cells of B. amyloliquefaciens MBL27 in alginate beads are more efficient for the production of AMP and had good stability. The potential application of AMP as a wound healant and the need for development of economical methods for improved production make whole cell immobilization an excellent alternative method for enhanced AMP production.  相似文献   

2.
Aims:  The present study was aimed at finding the optimal conditions for the production of pectate lyase using immobilized Bacillus pumilus DKS1 cells in calcium-alginate (Ca-alginate) beads and determining the efficient degumming of ramie fibre.
Methods and Results:  The active cells of B. pumilus DKS1 were immobilized in Ca-alginate and used for the production of pectate lyase. The production of enzyme increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 38·5 U ml−1 at 18 g l−1. This was about 1·5-fold higher than that obtained by free cells. Degummed fibre using immobilized cells showed better tenacity than that prepared by using nonimmobilized cells.
Conclusions:  The Ca-alginate entrapment is a promising immobilization method of B. pumilus DKS1 for semicontinuous enzyme production. Enzyme production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. Fibre degumming by using immobilized cells produced better quality fibre.
Significance and Impact of the Study:  This is the first report of degumming of fibre using enzyme from immobilized B. pumilus cells as per our knowledge. High-quality degummed fibre could be prepared with relatively inexpensive inputs for use in the textile and paper industry.  相似文献   

3.
In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.  相似文献   

4.
AIMS: To study the effect of co-contaminants (phenol) on the biodegradation of pyridine by freely suspended and calcium alginate immobilized bacteria. METHODS AND RESULTS: Varying concentrations of phenol were added to free and calcium alginate immobilized Pseudomonas putida MK1 (KCTC 12283) to examine the effect of this pollutant on pyridine degradation. When the concentration of phenol reached 0.38 g l(-1), pyridine degradation by freely suspended bacteria was inhibited. The increased inhibition with the higher phenol levels was apparent in increased lag times. Pyridine degradation was essentially completely inhibited at 0.5 g l(-1) phenol. However, immobilized cells showed tolerance against 0.5 g l(-1) phenol and pyridine degradation by immobilized cell could be achieved. CONCLUSIONS: This works shows that calcium alginate immobilization of microbial cells can effectively increase the tolerance of P. putida MK1 to phenol and results in increased degradation of pyridine. SIGNIFICANCE AND IMPACT OF THE STUDY: Treatment of wastewater stream can be negatively affected by the presence of co-pollutants. This work demonstrates the potential of calcium alginate immobilization of microbes to protect cells against compound toxicity resulting in an increase in pollutant degradation.  相似文献   

5.
Thermoalkalophilic esterase enzyme from Bal?ova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization.  相似文献   

6.
Streptomyces griseoloalbus was immobilized in calcium alginate gel and the optimal immobilization parameters (concentrations of sodium alginate and calcium chloride, initial biomass and curing time) for the enhanced production of alpha-galactosidase were determined. The immobilization was most effective with 3% sodium alginate and 0.1M calcium chloride. The optimal initial biomass for immobilization was approximately 2.2g (wet wt.). The alginate-entrapped cells were advantageous because there was a twofold increase in the enzyme yield (55 U/ml) compared to the highest yield obtained with free cells (23.6 U/ml). Moreover, with immobilized cells the maximum yield was reached after 72 h of incubation in batch fermentation under optimal conditions, whereas in the case of free cells the maximum enzyme yield was obtained only after 96 h of incubation. The alginate beads had good stability and also retained 75% ability of enzyme production even after eight cycles of repeated batch fermentation. It is significant that this is the first report on whole-cell immobilization for alpha-galactosidase production.  相似文献   

7.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

8.
AIMS: The purpose of the present investigation was to develop a novel method for cell immobilization. METHODS AND RESULTS: Aureobasidium pullulans cells were mixed with an alginate solution, and the mixture was extruded to form small gel beads as hydrated-immobilized cells. The beads were then placed at -15 degrees C for 6-24 h to induce freeze-dehydration. The freeze-dehydration resulted in shrinkage of beads as a result of water removal reducing bead volume by 82% and bead weight by 85%. The dehydrated beads were successfully used for the production of fructo-oligosaccharides in a model reactor system. CONCLUSIONS: Dehydrated beads may provide some commercial advantages over conventional immobilized cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that bioreactor performance can be improved up to two times by the use of the dehydrated beads.  相似文献   

9.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

10.
11.
Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.  相似文献   

12.
The thermoalkalophilic Bacillus halodurans JB 99 cells known for production of novel thermostable alkaline keratinolytic protease were immobilized in calcium alginate matrix. Batch and repeated batch cultivation using calcium alginate immobilized cells were studied for alkaline protease production in submerged fermentation. Immobilized cells with 2.5% alginate and 350 beads/flask of initial cell loading showed enhanced production of alkaline protease by 23.2% (5,275 ± 39.4 U/ml) as compared to free cells (4,280 ± 35.4 U/ml) after 24 h. In the semicontinuous mode of cultivation, immobilized cells under optimized conditions produced an appreciable level of alkaline protease in up to nine cycles and reached a maximal value of 5,975 U/ml after the seventh cycle. The enzyme produced from immobilized cells efficiently degraded chicken feathers in the presence of a reducing agent which can help the poultry industry in the management of keratin-rich waste and obtaining value-added products.  相似文献   

13.
Bacteriocinogenic strains, Lactococcus lactis subsp. lactis DPC 3147 and L. lactis DPC 496, producing lacticin 3147 and nisin, respectively, were immobilized in double-layered calcium alginate beads. These beads were inoculated into MRS broth at a ratio of 1:4 and continuously fermented for 180 h. Free cells were used to compare the effect of immobilization on bacteriocin production. After equilibrium was reached, a flow rate of 580 ml h(-1) was used in the immobilized cell (IC), and 240 ml h(-1) in free-cell (FC) bioreactors. Outgrowth from beads was observed after 18 h. Bacteriocin production peaked at 5120 AU ml(-1) in both IC and FC bioreactors. However, FC production declined after 80 h to 160 AU ml(-1) at the end of the fermentation. Results of this study indicate that immobilization offers the possibility of a more stable and long-term means of producing lacticin 3147 in laboratory media than with free cells.  相似文献   

14.
利用固定化黑曲霉单宁酶制备没食子酸的研究   总被引:10,自引:0,他引:10  
用海藻酸钙载体包埋单宁酶,制备出转化五倍子单宁成没食子酸能力较好的固定化酶。研究了固定化条件和固定化单宁酶的部分性质,结果表明:最佳固定化条件为海藻酸钠90mg包埋单宁酶546u(3mL,182u/Ml),在1%~2%CaCl2中作硬化处理;固定化单宁酶的最适温度为45℃,在10~50℃范围内稳定;其最适Ph值为6.5,在Ph5~7之间基本稳定;在此基础上,进行了没食子酸实验室克量级酶法制备实验,3次实验没食子酸产品的平均产率达到61%。和目前所用工业生产没食子酸的硫酸水解法相当,具有潜在的工业开发价值。  相似文献   

15.
Aims:  Evaluation of various immobilization methods and bioreactors for sulfide oxidation using Thiobacillus sp. was studied.
Methods and Results:  Ca-alginate, K-carrageenan and agar gel matrices (entrapment) and polyurethane foam and granular activated carbon (adsorption) efficacy was tested for the sulfide oxidation and biomass leakage using immobilized Thiobacillus sp. Maximum sulfide oxidation of 96% was achieved with alginate matrix followed by K-carrageenan (88%). Different parameters viz. alginate concentration (1%, 2%, 3%, 4% and 5%), CaCl2 concentration (1%, 2%, 3%, 4% and 5%), bead diameter (1, 2, 3, 4 and 5 mm), and curing time (1, 3, 6, 12 and 18 h) were studied for optimal immobilization conditions. Repeated batch experiments were carried out to test reusability of Ca-alginate immobilized beads for sulfide oxidation in stirred tank reactor and fluidized bed reactor (FBR) at different sulfide concentrations.
Conclusions:  The results proved to be promising for sulfide oxidation using Ca-alginate gel matrix immobilized Thiobacillus sp. for better sulfide oxidation with less biomass leakage.
Significance and Impact of the Study:  Biological sulfide oxidation is gaining more importance because of its simple operation. Present investigations will help in successful design and operation of pilot and industrial level FBR for sulfide oxidation.  相似文献   

16.
ABSTRACT: BACKGROUND: The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. RESULTS: It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4[prime]-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 mumol/min/g dw of cells for immobilized catalyst vs 40.54 mumol/min/g for free cells in the asymmetric reduction of 4[prime]-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da < <1, and internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors eta < 1 and Thiele modulus 0.3<[empty set] <1. CONCLUSIONS: Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to free cells could give highly practicable immobilized biocatalyst.  相似文献   

17.
We report an experimental procedure that results in the immobilization of the motile Tetraselmis in an alginate bead, thereby providing clonal populations for ultrastructure research and greatly facilitating transmission electron microscope (TEM) studies. The Prasinophyte Tetraselmis CS317, which is a potential candidate species for aquaculture, was used in our study. The cells were immobilized in Ca-alginate beads and allowed to grow within the beads for 2 weeks. Each cell in the bead divided repeatedly, resulting in a dense clonal population which could be easily distinguished under a compound microscope. Portions of the Tetraselmis-alginate beads containing the clonal populations were then used for TEM processing for a fine structure study without the need for centrifugation. The normal TEM processing of microalgae by repeated centrifugations during processing or a centrifugation-agar embedding mixture is very time consuming and unreliable due to the nature of the agar and, in the case of the motile Tetraselmis, the force of centrifugation required to sediment the cells. Our results revealed that the alginate did not interfere with the fixation, embedding and sectioning, and the cells appeared to possess all of the structural characteristics of Tetraselmis cells, including the flagella apparatus. We conclude that immobilized Tetraselmis in alginate provides a simple experimental system for ultrastructural research. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

18.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

19.
利用经海藻酸钙包埋的重组大肠杆菌细胞催化D-半乳糖生产D-塔格糖,考察了细胞包埋量、反应条件对固定化细胞催化效率以及对D-塔格糖生产稳定性的影响。确定的最优转化条件为:温度65℃,pH 6.5,添加终浓度为1 mmol/L Mn2+,底物(D-半乳糖)浓度100 g/L,重组大肠杆菌细胞用量40 g/L。固定化小球在0.3%戊二醛溶液中交联30 min可以显著提高其在高温下的机械强度。考察了异构化反应体系中硼酸与底物间的摩尔比对产率的影响。研究结果表明,添加适量的硼酸可以改变原有的化学反应平衡,实现D-塔格糖的高产。利用D-半乳糖为底物在最优的反应条件下催化24 h,固定化细胞对D-半乳糖的转化率最高,可达65.8%,连续转化8批次的平均转化率为60.6%,为工业化生产D-塔格糖奠定了基础。  相似文献   

20.
Immobilization offers several intrinsic advantages over free suspension cultures for the production of monoclonal antibodies. An important advantage of immobilization is the improved specific monoclonal antibody (MAb) productivity (q(MAb)) that can be obtained. However, there are conflicting reports in the literature on the enhancement of the q(MAb) with immobilization. The discrepancies between these reports can be attributed to the different to either the cultivation methods used for immobilized cell or to difference between the cell lines used in the various studies. We show that these differences may be attributed to the different cultivation methods used for one model hybridoma cell line. S3H5/Upsilon2bA2 hybridoma cells entrapped in different sizes of calcium alginate beads were cultivated in both T- and spinner flasks in order to determine whether cultivation methods (T- and spinner flasks) and bead size influence the q(MAb) Free-suspended cell cultures inoculated with cells recovered from alginate beads were also carried out in order to determine whether changes in the q(Mab) of the entrapped cells are reversible.The cultivation methods was found to influence significantly the q(MAb) of the entrapped cells. When the entrapped cells in 1-mn diameter beads were cultivated in T-flasks, the q(MAb) was not increased by 200% as previously observed in an entrapped cell culture using 1-mm-diameter alginate beads in spinner flasks. The q(MAb) of the entrapped cell was approximately 58% higher than that of the free-suspended cells in a control experiment. Unlike the cultivation method, the bead size in the range of 1- to 3-mm diameter did not significantly influence the q(MAb), regardless of cultivations methods. The changes in q(MAb) of an entrapped cells were reversible. When the free-suspended cells recovered from the T- and spinner flasks were sub-cultured in T- and spinner flasks enhanced q(MAb) of the entrapped cells in both cases decreased to the level of the free-suspended cell in a control experiments. Taken together, these results shows that the method of cultivation of hybridoma cells immobilized in alginate beads determines the extent of enhancement of the q(MAb). (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号