首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Segregation of Ferritin in Glomerular Protein Absorption Droplets   总被引:25,自引:15,他引:10       下载免费PDF全文
Ferritin was used as a tracer to study the mechanism by which proteins are segregated into droplets by the visceral epithelium of glomerular capillaries. In glomeruli from both normal and aminonucleoside-nephrotic rats ferritin molecules introduced into the general circulation penetrated the endothelial openings and were seen at various levels in the basement membrane. Striking differences between nephrotic and controls were seen only in the amount of ferritin incorporated into the epithelium. In normal animals, a few ferritin molecules were seen in small invaginations of the cell membrane limiting the foot processes, within minute vesicles in the epithelium, or within occasional large vacuoles and dense bodies. In nephrotics, epithelial pinocytosis was marked, and numerous ferritin molecules were seen within membrane invaginations and in small cytoplasmic vesicles at all time points. After longer intervals, the concentration of ferritin increased in vacuoles and particularly within the dense bodies or within structures with a morphology intermediate between that of vacuoles and dense bodies. In nephrotic animals cleft-like cavities or sinuses were frequently encountered along the epithelial cell surface facing the urinary spaces. Some of these sinuses contained material resembling that filling the dense bodies except that it appeared less compact. The findings suggest that ferritin molecules—and presumably other proteins which penetrate the basement membrane—are picked up by the epithelium in pinocytotic vesicles and transported via the small vesicles to larger vacuoles which are subsequently transformed into dense bodies by progressive condensation. The content of the dense bodies may then undergo partial digestion and be extruded into the urinary spaces where it disperses. The activity of the glomerular epithelium in the incorporation and segregation of protein is similar in normal and nephrotic animals, except that the rate is considerably higher in nephrosis where the permeability of the glomerular basement membrane is greatly increased.  相似文献   

2.
3.
THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSE   总被引:50,自引:20,他引:30       下载免费PDF全文
Sections of mouse gall bladder epithelium fixed by perfusion with buffered osmium tetroxide have been studied in the electron microscope as an example of simple columnar epithelium. The free surface presents many microvilli, each presenting a dense tip, the capitulum, and displaying a radiating corona of delicate filaments, the antennulae microvillares. Very small pit-like depressions, representing caveolae intracellulares, are encountered along the cell membrane of the microvilli. The free cell surface between microvilli shows larger cave-like depressions, likewise representing caveolae intracellulares, containing a dense material. The lateral cell borders are extensively folded into pleats, which do not interdigitate extensively with corresponding folds of the adjacent cell membrane. The terminal bars are shown to consist of thickened densities of the cell membrane itself in the region of insertion of the lateral cell wall with the free cell surface. This thickening is associated with an accumulation of dense cytoplasmic material in the immediate vicinity. The terminal bar is thus largely a cytoplasmic and cell membrane structure, rather than being primarily intercellular in nature. The basal cell membrane is relatively straight except for a conical eminence near the center of the cell, projecting slightly into the underlying tunica propria. The basal cell membrane itself is overlain by a delicate limiting membrane, which does not follow the lateral contours of the cell. Unmyelinated intercellular nerve terminals with synaptic vesicles have been encountered between the lateral walls of epithelial cells. A division of the gall bladder epithelial cell into five zones according to Ferner has been found to be convenient for this study. The following cytoplasmic components have been noted, and their distribution and appearance described: dense absorption granules, mitochondria, Golgi or agranular membranes, endoplasmic reticulum or ergastoplasm, ring figures, and irregular dense bodies, perhaps lipoid in nature. The nucleus of these cells is also described.  相似文献   

4.
ELECTRON MICROSCOPY OF THE AVIAN RENAL GLOMERULUS   总被引:1,自引:0,他引:1       下载免费PDF全文
Electron microscopy of sections of chicken glomeruli shows them to possess a large central cell mass, occupying the hilum and the centre of the glomerulus, and continuous with the adventitia of the afferent and efferent arterioles. The glomerular capillaries form a much simpler system than in mammals and are spread over the surface of the central cell mass. Between the capillaries the mass is limited externally by the major component of the glomerular capillary basement membrane, which continues over the surface of the mass from one capillary to the next. Projections of the central cell mass characteristically form the support for glomerular capillaries, and smaller knobs of the central mass may project actually into the lumen of the capillaries, but always carry a layer of endothelial cytoplasm before them. They are never in direct contact with blood. The basement membrane of the glomerular capillary loop has a central dense layer and two lateral less dense layers as in mammals. The central dense layer is continuous with similar appearing dense material in the intercellular spaces of the adventitiae of the arterioles, and also with that of the central cell mass. The two less dense layers can also be traced into direct continuity with the less dense regions of this intercellular substance. The endothelial cytoplasm is spread as a thin sheet over the inner surface of the capillary basement membrane, and shows scattered "pores" resembling those described in mammals. Epithelial cells with interlacing pedicels are at least as prominent as those in mammals. Bowman's capsular membrane also possesses three layers similar to but less wide than those of the capillary basement membrane, and all three layers can be traced into continuity with the dark and light regions of the intercellular material of the adventitial cells of the arterioles, and beyond them with that of the central cell mass. At the hilum Bowman's capsular membrane also fuses with the capillary basement membrane.  相似文献   

5.
Using an affinity purified antibody raised against the RI-H fragment of rat intestinal lectin L-36, the latter protein has been identified within the esophageal epithelium by means of ultracryotomy followed by immunogold labeling. The epithelium consists of 4 morphologically distinct cell-types, namely, the basal, spiny, granular and squamous cells, and each of these exhibits a different immunolabeling pattern. The basal cells form a layer on the basal lamina, and in these a diffuse cytoplasmic staining is observed. This basal cell layer is overlaid by spiny cells that extend many cell processes into wide intercellular spaces. In these cells, immunogold particles are found only on small granular inclusions consisting of an electron-lucent homogeneous substance. The granular cells from a third layer over the spiny cells, and are characterized by a number of large granular inclusions with an electron-dense core rimmed by a less electron-dense substance. Immunogold labeling is found on these granules, both on the core and peripheral region. Squamous cell-types constitute the most superficial layer of the epithelium. They are without granular inclusions, and immunogold labeling is confined to the cytoplasmic surface of the thickened plasma membrane. These findings suggest that L-36 is produced in the basal cells as free cytosolic protein, then becomes progressively aggregated into the granular inclusions of the spiny and granular cells, and is eventually transferred onto the cytoplasmic surface of the squamous cell plasma membrane where it may interact with complementary glycoconjugate(s) located at this site. The membrane lining substance thus formed may play a role in stabilizing the squamous cell membranes, thereby maintaining the structural integrity of the epithelium against mechanical stress coming from the esophageal lumen.  相似文献   

6.
Certain junctions between ependymal cells, between astrocytes, and between some electrically coupled neurons have heretofore been regarded as tight, pentalaminar occlusions of the intercellular cleft. These junctions are now redefined in terms of their configuration after treatment of brain tissue in uranyl acetate before dehydration. Instead of a median dense lamina, they are bisected by a median gap 20–30 A wide which is continuous with the rest of the interspace. The patency of these "gap junctions" is further demonstrated by the penetration of horseradish peroxidase or lanthanum into the median gap, the latter tracer delineating there a polygonal substructure. However, either tracer can circumvent gap junctions because they are plaque-shaped rather than complete, circumferential belts. Tight junctions, which retain a pentalaminar appearance after uranyl acetate block treatment, are restricted primarily to the endothelium of parenchymal capillaries and the epithelium of the choroid plexus. They form rows of extensive, overlapping occlusions of the interspace and are neither circumvented nor penetrated by peroxidase and lanthanum. These junctions are morphologically distinguishable from the "labile" pentalaminar appositions which appear or disappear according to the preparative method and which do not interfere with the intercellular movement of tracers. Therefore, the interspaces of the brain are generally patent, allowing intercellular movement of colloidal materials. Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.  相似文献   

7.
We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.  相似文献   

8.
Locke M 《Tissue & cell》1985,17(6):901-921
Epidermal cells in Calpodes and other insects form basal processes or feet that at first extend axially and later shorten at the same time as the larval segment shortens to the pupal shape. The feet grow into spaces at the surfaces of other cells to make a basal interlacing meshwork of cellular extensions that are combined mechanically by their desmosomal attachments to cell bodies above and to the basal lamina below. Microtubules and microfilaments are linked to these junctions by a reticular fibrous matrix. Gap junctions on the feet may couple cells that are several cell bodies removed from one another. The meshwork is also a sieve separating the hemolymph from the spaces between cells to form an intercellular compartment. Entry to the intercellular compartment is through the sieve made by the negatively charged basolateral cell surfaces that can prevent the entry of positively charged molecules such as cationic ferritin. As the cells become columnar, coincident with the metamorphic change in segment shape, the feet shorten and pack more densely together. At this time the basal lamina buckles axially as if responding to contraction of the feet. Segment shape change involves cell rearrangement and relative cell movement, necessitating the transient loss of plasma membrane plaque attachments to the cuticle apically and the loss of junctions laterally. Gap junctions involute in characteristic vacuoles. The metamorphic reduction in cell surface area coincides with the loss of basolateral membrane in smooth tubes and vesicles and the turnover of the apical surface in multivesicular bodies. New apical plasma membrane plaques and new lateral and basal junctions stabilize the cells in their pupal positions.  相似文献   

9.
A STUDY OF THE COMPONENTS OF THE CORNIFIED EPITHELIUM OF HUMAN SKIN   总被引:1,自引:3,他引:1       下载免费PDF全文
Pulverized cornified epithelium of human skin was divided into a "soluble fraction" and a "residue." About half of the "soluble fraction" proved to be soluble epidermal keratin (keratin A); the remainder, dialyzable substances of low molecular weight. The "residue" contained epidermal keratin and resistant cell membranes of cornified cells. Epidermal keratin was found to form an oriented and dense submicroscopic structure in the cornified cells. It showed high resistance toward strong acid and moderately strong alkali solutions as well as concentrated urea. In strong alkali, reducing substances, alkaline urea, and mixtures of reducing substance with alkali, epidermal keratin dissociated and yielded a non-dialyzable derivative of high molecular weight (keratin B) which resembled true proteins. The cell membranes of cornified cells showed higher resistance toward strong alkali and reducing substance than did epidermal keratin.  相似文献   

10.
THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT   总被引:21,自引:14,他引:7       下载免费PDF全文
The ciliated ependyma of the rat brain consists of a sheet of epithelial cells, the luminal surface of which is reflected over ciliary shafts and numerous evaginations of irregular dimensions. The relatively straight lateral portions of the plasmalemma of contiguous cells are fused at discrete sites to form five-layered junctions or zonulae occludentes which obliterate the intercellular space. These fusions occur usually at some distance below the free surface either independently or in continuity with a second intercellular junction, the zonula adhaerens. The luminal junction is usually formed by a zonula adhaerens or, occasionally, by a zonula occludens. The finely granular and filamentous cytoplasm contains supranuclear dense bodies, some of which are probably lysosomes and dense whorls of perinuclear filaments which send fascicles toward the lateral plasmalemma. The apical regions of the cytoplasm contain the basal body complexes of neighboring cilia. These complexes include a striated basal foot and short, non-striated rootlets emanating from the wall of each basal body. The rootlets end in a zone of granules about the proximal region of the basal body, adjacent to which may lie a striated mass of variable shape. All components of the basal body complex of adjacent cilia are independent of each other.  相似文献   

11.
Summary Two protein antigens, horseradish peroxidase (HRP) and ferritin, have been administered to the digestive tract of carp. Electron-microscopical observations reveal considerable absorption of both antigens in the second segment of the gut (from 70 to 95% of the total length) and also, although to a lesser extent, in the first segment (from 0 to 70% of the total length). Even when administered physiologically with food, a large amount of ferritin is absorbed by enterocytes in the second gut segment.HRP and ferritin are processed by enterocytes in different ways. HRP seems to adhere to the apical cell membrane, probably by binding to receptors, and is transported in vesicles to branched endings of lamellar infoldings of the lateral and basal cell membrane. Consequently, most of the HRP is released in the intercellular space where it contacts intra-epithelial lymphoid cells. Only small amounts of HRP become localized in secondary lysosomes of enterocytes. Ferritin does not bind to the apical cell membrane; after uptake by pinocytosis, it is present in small vesicles or vacuoles that appear to fuse with lysosome-like-bodies. In the second segment, intact ferritin ends up in the large supranuclear vacuoles (after 8 h), where it is digested slowly. Although no ferritin is found in the intercellular space, ferritin-containing macrophages are present between the epithelial cells, in the lamina propria and also to a small extent in the spleen. The transport of antigens from the intestinal lumen, through enterocytes, to intra-epithelial lymphoid cells or macrophages may have immunological implications, such as induction of a local immune response and prospectives for oral vaccination.  相似文献   

12.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

13.
The nature and content of lytic bodies and the localization of acid phosphatase (AcPase) activity were investigated in mammotrophic hormone-producing cells (MT) from rat anterior pituitary glands. MT were examined from lactating rats in which secretion of MTH1 was high and from postlactating rats in which MTH secretion was suppressed by removing the suckling young. MT from lactating animals contained abundant stacks of rough-surfaced ER, a large Golgi complex with many forming secretory granules, and a few lytic bodies, primarily multivesicular bodies and dense bodies. MT from postlactating animals, sacrificed at selected intervals up to 96 hr after separation from their suckling young, showed (a) progressive involution of the protein synthetic apparatus with sequestration of ER and ribosomes in autophagic vacuoles, and (b) incorporation of secretory granules into multivesicular and dense bodies. The content of mature granules typically was incorporated into dense bodies whereas that of immature granules found its way preferentially into multivesicular bodies. The secretory granules and cytoplasmic constituents segregated within lytic bodies were progressively degraded over a period of 24 to 72 hr to yield a common residual body, the vacuolated dense body. In MT from lactating animals, AcPase reaction product was found in lytic bodies, and in several other sites not usually considered to be lysosomal in nature, i.e., inner Golgi cisterna and associated vesicles, and around most of the immature, and some of the mature secretory granules. In MT from postlactating animals, AcPase was concentrated in lytic bodies; reaction product and incorporated secretory granules were frequently recognizable within the same multivesicular or dense body which could therefore be identified as "autolysosomes" connected with the digestion of endogenous materials. Several possible explanations for the occurrence of AcPase in nonlysosomal sites are discussed. From the findings it is concluded that, in secretory cells, lysosomes function in the regulation of the secretory process by providing a mechanism which takes care of overproduction of secretory products.  相似文献   

14.
Toad spinal ganglion cells are individually enclosed in sheaths consisting of one or more attenuated layers of satellite cell cytoplasm surrounded externally by a basement membrane. Narrow (~150 A) extracellular channels separate these layers from one another and from the underlying neuron. In both in vivo and in vitro experiments it was found that molecules of ferritin, a water-soluble protein, are to some extent able to pass across the basement membrane and through these channels to reach the neuronal plasma membrane. Ferritin particles arriving at the neuronal surface are engulfed by the neuron in 0.1 to 0.2 µ "coated" vesicles. The concentration of ferritin in these vesicles is higher than in the perineuronal space. The ferritin incorporated into the neuron is segregated, apparently intact, in multivesicular bodies. It is inferred that the 150A channels in the satellite cell sheath are patent, aqueous spaces through which molecules with a diameter as large as 95 A are able to pass, and that these neurons are capable of taking up whole protein from their immediate environment by the process of pinocytosis.  相似文献   

15.
PROTEIN UPTAKE IN THE OOCYTES OF THE CECROPIA MOTH   总被引:8,自引:7,他引:1       下载免费PDF全文
The formation of yolk spheres in the oocyte of the cecropia moth, Hyalophora cecropia (L.), is known immunologically to result largely from uptake of a sex-limited blood protein. Recent electron microscope analyses of insect and other animal oocytes have demonstrated fine structural configurations consistent with uptake of proteins by pinocytosis. An electron microscope analysis of the cecropia ovary confirms the presence of similar structural modifications. With the exception of two apparently amorphous layers, the basement lamella on the outer surface of the follicular epithelium and the vitelline membrane on the inner, there is free access of blood to the oocyte surface between follicle cells. Dense material is found in the interfollicular cell space and adsorbed to the outer surface of the much folded oocyte membrane. Pits in the oocyte membrane and vesicles immediately under it are lined with the same dense material not unlike the yolk spheres in appearance. Introduction of ferritin into the blood of a developing cecropia moth and its localization adsorbed to the surface of the oocyte, and within the vesicles and yolk spheres of the oocyte cortex, is experimental evidence that the structural modifications of the oocyte cortex represent stages in the pinocytosis of blood proteins which arrive at the oocyte surface largely by an intercellular route. Small tubules attached to the yolk spheres are provisionally interpreted as a manifestation of oocyte-synthesized protein being contributed to the yolk spheres.  相似文献   

16.
The permeability barrier in mammalian epidermis   总被引:16,自引:4,他引:12       下载免费PDF全文
The structural basis of the permeability barrier in mammalian epidermis was examined by tracer and freeze-fracture techniques. Water-soluble tracers (horesradish peroxidase, lanthanum, ferritin) were injected into neonatal mice or into isolated upper epidermal sheets obtained with staphylococcal exfoliatin. Tracers percolated through the intercellular spaces to the upper stratum granulosum, where further egress was impeded by extruded contents of lamellar bodies. The lamellar contents initially remain segregated in pockets, then fuse to form broad sheets which fill intercellular regions of the stratum corneum, obscuring the outer leaflet of the plasma membrane. These striated intercellular regions are interrupted by periodic bulbous dilatations. When adequately preserved, the interstices of the stratum corneum are wider, by a factor of 5-10 times that previously appreciated. Freeze-fracture replicas of granular cell membranes revealed desmosomes, sparse plasma membrane particles, and accumulating intercellular lamellae, but no tight junctions. Fractured stratum corneum displayed large, smooth, multilaminated fracture faces. By freeze-substitution, proof was obtained that the fracture plane had diverted from the usual intramembranous route in the stratum granulosum to the intercellular space in the stratum corneum. We conclude that: (a) the primary barrier to water loss is formed in the stratum granulosum and is subserved by intercellular deposition of lamellar bodies, rather than occluding zonules; (b) a novel, intercellular freeze-fracture plane occurs within the stratum corneum; (c) intercellular regions of the stratum corneum comprise an expanded, structurally complex, presumably lipid-rich region which may play an important role in percutaneous transport.  相似文献   

17.
R. A. Andersen 《Protoplasma》1985,128(2-3):94-106
Summary Flagellated vegetative cells of the colonial golden algaSynura uvella Ehr, were examined using serial sections. The two flagella are nearly parallel as they emerge from a flagellar pit near the apex of the cell. The photoreceptor is restricted to swellings on the flagella in the region where they pass through the apical pore in the scale case and the swellings are not associated with the cell membrane or an eyespot. A unique ring-like structure surrounds the axonemes of both flagella at a level just above the transitional helix. The basal bodies are interconnected by three striated, fibrous bands. Four short (<100 nm) microtubules lie between the basal bodies at their proximal ends. Two rhizoplasts extend down from the basal bodies and separate into numerous fine striated bands which lie over the nucleus. Three- and four-membered microtubular roots arise from the rhizoplasts and extend apically together. As the roots reach the cell anterior, the three-membered root bends and curves clockwise to form a large loop around the flagella; the four-membered root bends anticlockwise and terminates under the distal end of the three-membered root as it completes the loop. There are four absolute orientations, termed Types 1–4, in which the flagellar apparatus can occur. With each orientation type the positions of the Golgi body, nucleus, rhizoplasts, chloroplasts and microtubular roots change with respect to the flagella, basal bodies and photoreceptor. Two new basal bodies appear in pre-division cells, and three short microtubules appear in a dense substance adjacent to each new basal body. Based upon the positions of new pre-division basal bodies, a hypothesis is proposed to explain why there are four orientations and how they are maintained through successive cell divisions.  相似文献   

18.
Summary Rabbit yolk sac splanchnopleur exposed in utero to IgG-HRP and IgG-ferritin conjugates, rabbit and bovine anti-HRP antibodies, free HRP, ferritin and human IgG, was examined ultrastructurally in an attempt to determine whether or not coated micropinocytotic vesicles are involved in selectively transporting immunoglobulins across yolk sac endodermal cells. Human, rabbit and bovine IgG-HRP conjugates, rabbit anti-HRP antibodies, free HRP and human IgG, all become localised in coated micropinocytotic vesicles. Differences were observed in that only human IgG and rabbit anti-HRP antibodies could be located in the intercellular space and bovine IgG-HRP conjugate could not be detected in coated micropinocytotic vesicles in confluence with the lateral and basal plasmalemma. Bovine anti-HRP antibodies, IgG-ferritin conjugates, and free ferritin, could not be observed in coated micropinocytotic vesicles. All proteins were detected in macropinocytotic vesicles, and dense bodies resembling phagolysosomes. Results are discussed in the light of a proposal that selection occurs at the cell surface during formation of coated micropinocytotic vesicles and is not linked to intracellular proteolysis.Supported by an award from the Medical Research Council, to whom grateful acknowledgement is made  相似文献   

19.
Regions of the crayfish kidney were examined by electron microscopy. Coelsmosac cells are loosely bound together by desmosome-like spot junctions, and connected to the basal lamina via characteristic pedicels. The cytoplasm contains numerous vesicles and vacuoles of various sizes and is often crowded with large, lysosome-like granules or dense bodies. The morphology suggests a filtration mechanism with reabsorption of materials such as protein from the filtrate and secretion of other substances into the lumen. The labyrinth is composed of cuboidal to columnar cells which possess a brush border, long and narrow intercellular spaces, basal plasmalemmal invaginations and typical cytoplasmic components. Two sub-regions are distinguishable. The morphology of labyrinth I suggests that these cells move fluid isotonically across the epithelium. Labyrinth II, in addition to isotonic transport, appears to be more active in the endocytic uptake and intracellular digestion of large molecules such as protein. The nephridial canal consists of cells which lack a brush border, but display extensive basal invaginations associated with elongated mitochondria. A proximal and distal region are cytologically distinguishable. Proximally, the cells are small and filled with mitochondria throughout. Scattered within the cytoplasm are vesicles, vacuoles, diffuse glycogen, free ribosomes, dense bodies and some rough endoplasmic reticulum. Distally, the cells are less compact, larger, and cuboidal to columnar in shape. The cytoplasm is similar to that of the proximal cells, but the basal invaginations are even larger and more extensive. The morphology of cells in both regions of the nephridial canal is highly suggestive of active solute reabsorption, probably occurring against an osmotic gradient.  相似文献   

20.
The seed of Washingtonia filifera (Lindl.) Wendl. is hemispherical and has a smooth testa. The embryo is located on the rounded side of the seed near the raphe. The embryo consists of a prominent single cotyledon, an epicotyl, and a small root apex. The shoot apex is oriented at a right angle to the long axis of the embryo and possesses 2 to 3 leaf primordia. The cotyledon functions as a storage organ and is composed of three cell types with similar ultrastructure. These three types—the parenchyma, protoderm, and procambium—can be distinguished on the basis of position, size, and shape. The procambial strands in the cotyledon consist of a ring of bundles grouped into two distinct sympodia and extend from beneath the shoot apical meristem to the tip of the cotyledon where they are situated very close to the surface. The most prominent organelles within all cell types are protein bodies, lipid bodies, and crystalline protein fibers. The protein bodies contain small crystalline inclusions which are presumed to be phytin. Protein bodies in the protoderm were smaller, denser-staining, and contained fewer crystalline inclusions than those in the parenchyma or procambium. On a volume basis, the parenchyma was shown to be 43% protein bodies, 25% lipid bodies, 15% cytoplasm, 7% cell wall, 4% intercellular space, 2% nuclei, and 4% other organelles (mitochondria and plastids).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号