首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
BackgroundReliable image comparisons, based on fast and accurate deformable registration methods, are recognized as key steps in the diagnosis and follow-up of cancer as well as for radiation therapy planning or surgery. In the particular case of abdominal images, the images to compare often differ widely from each other due to organ deformation, patient motion, movements of gastrointestinal tract or breathing. As a consequence, there is a need for registration methods that can cope with both local and global large and highly non-linear deformations.MethodDeformable registration of medical images traditionally relies on the iterative minimization of a cost function involving a large number of parameters. For complex deformations and large datasets, this process is computationally very demanding, leading to processing times that are incompatible with the clinical routine workflow. Moreover, the highly non-convex nature of these optimization problems leads to a high risk of convergence toward local minima. Recently, deep learning approaches using Convolutional Neural Networks (CNN) have led to major breakthroughs by providing computationally fast unsupervised methods for the registration of 2D and 3D images within seconds. Among all the proposed approaches, the VoxelMorph learning-based framework pioneered to learn in an unsupervised way the complex mapping, parameterized using a CNN, between every couple of 2D or 3D pairs of images and the corresponding deformation field by minimizing a standard intensity-based similarity metrics over the whole learning database. Voxelmorph has so far only been evaluated on brain images. The present study proposes to evaluate this method in the context of inter-subject registration of abdominal CT images, which present a greater challenge in terms of registration than brain images, due to greater anatomical variability and significant organ deformations.ResultsThe performances of VoxelMorph were compared with the current top-performing non-learning-based deformable registration method “Symmetric Normalization” (SyN), implemented in ANTs, on two representative databases: LiTS and 3D-IRCADb-01. Three different experiments were carried out on 2D or 3D data, the atlas-based or pairwise registration, using two different similarity metrics, namely (MSE and CC). Accuracy of the registration was measured by the Dice score, which quantifies the volume overlap for the selected anatomical region.All the three experiments exhibit that the two deformable registration methods significantly outperform the affine registration and that VoxelMorph accuracy is comparable or even better than the reference non-learning based registration method ANTs (SyN), with a drastically reduced computation time.ConclusionBy substituting a time consuming optimization problem, VoxelMorph has made an outstanding achievement in learning-based registration algorithm, where a registration function is trained and thus, able to perform deformable registration almost accurately on abdominal images, while reducing the computation time from minutes to seconds and from seconds to milliseconds in comparison to ANTs (SyN) on a CPU.  相似文献   

2.
3.
To achieve the image registration/fusion and perfect the quality of the integration, with dual modality contrast agent (DMCA), a novel multi-scale representation registration method between ultrasound imaging (US) and magnetic resonance imaging (MRI) is presented in the paper, and how DMCA influence on registration accuracy is chiefly discussed. Owing to US’s intense speckle noise, it is a tremendous challenge to register US with any other modality images. How to improve the algorithms for US processing has become the bottleneck, and in the short term it is difficult to have a breakthrough. In that case, DMCA is employed in both US and MRI to enhance the region of interest. Then, because multi-scale representation is a strategy that attempts to diminish or eliminate several possible local minima and lead to convex optimization problems to be solved quickly and more efficiently, a multi-scale representation Gaussian pyramid based affine registration (MRGP-AR) scheme is constructed to complete the US-MRI registration process. In view of the above-mentioned method, the comparison tests indicate that US-MRI registration/fusion may be a remarkable method for gaining high-quality registration image. The experiments also show that it is feasible that novel nano-materials combined with excellent algorithm are used to solve some hard tasks in medical image processing field.  相似文献   

4.
PurposeTo report the commissioning and validation of deformable image registration(DIR) software for adaptive contouring.MethodsDIR (SmartAdapt®v13.6) was validated using two methods namely contour propagation accuracy and landmark tracking, using physical phantoms and clinical images of various disease sites. Five in-house made phantoms with various known deformations and a set of 10 virtual phantoms were used. Displacement in lateral, anterio-posterior (AP) and superior-inferior (SI) direction were evaluated for various organs and compared with the ground truth. Four clinical sites namely, brain (n = 5), HN (n = 9), cervix (n = 18) and prostate (n = 23) were used. Organs were manually delineated by a radiation oncologist, compared with the deformable image registration (DIR) generated contours. 3D slicer v4.5.0.1 was used to analyze Dice Similarity Co-efficient (DSC), shift in centre of mass (COM) and Hausdorff distances Hf95%/avg.ResultsMean (SD) DSC, Hf95% (mm), Hfavg (mm) and COM of all the phantoms 1–5 were 0.84 (0.2) mm, 5.1 (7.4) mm, 1.6 (2.2) mm, and 1.6 (0.2) mm respectively. Phantom-5 had the largest deformation as compared to phantoms 1–4, and hence had suboptimal indices. The virtual phantom resulted in consistent results for all the ROIs investigated. Contours propagated for brain patients were better with a high DSC score (0.91 (0.04)) as compared to other sites (HN: 0.84, prostate: 0.81 and cervix 0.77). A similar trend was seen in other indices too. The accuracy of propagated contours is limited for complex deformations that include large volume and shape change of bladder and rectum respectively. Visual validation of the propagated contours is recommended for clinical implementation.ConclusionThe DIR algorithm was commissioned and validated for adaptive contouring.  相似文献   

5.
Peptide receptor radionuclide therapy (PRRT) is an effective MRT (molecular radiotherapy) treatment, which consists of multiple administrations of a radiopharmaceutical labelled with 177Lu or 90Y. Through sequential functional imaging a patient specific 3D dosimetry can be derived. Multiple scans should be previously co-registered to allow accurate absorbed dose calculations. The purpose of this study is to evaluate the impact of image registration algorithms on 3D absorbed dose calculation.A cohort of patients was extracted from the database of a clinical trial in PRRT. They were administered with a single administration of 177Lu-DOTATOC. All patients underwent 5 SPECT/CT sequential scans at 1 h, 4 h, 24 h, 40 h, 70 h post-injection that were subsequently registered using rigid and deformable algorithms. A similarity index was calculated to compare rigid and deformable registration algorithms. 3D absorbed dose calculation was carried out with the Raydose Monte Carlo code.The similarity analysis demonstrated the superiority of the deformable registrations (p < .001).Average absorbed dose to the kidneys calculated using rigid image registration was consistently lower than the average absorbed dose calculated using the deformable algorithm (90% of cases), with percentage differences in the range [−19; +4]%. Absorbed dose to lesions were also consistently lower (90% of cases) when calculated with rigid image registration with absorbed dose differences in the range [−67.2; 100.7]%. Deformable image registration had a significant role in calculating 3D absorbed dose to organs or lesions with volumes smaller than 100 mL.Image based 3D dosimetry for 177Lu-DOTATOC PRRT is significantly affected by the type of algorithm used to register sequential SPECT/CT scans.  相似文献   

6.
PurposeAn investigation was carried out into the effect of three image registration techniques on the diagnostic image quality of contrast-enhanced magnetic resonance angiography (CE-MRA) images.MethodsWhole-body CE-MRA data from the lower legs of 27 patients recruited onto a study of asymptomatic atherosclerosis were processed using three deformable image registration algorithms. The resultant diagnostic image quality was evaluated qualitatively in a clinical evaluation by four expert observers, and quantitatively by measuring contrast-to-noise ratios and volumes of blood vessels, and assessing the techniques' ability to correct for varying degrees of motion.ResultsThe first registration algorithm (‘AIR’) introduced significant stenosis-mimicking artefacts into the blood vessels' appearance, observed both qualitatively (clinical evaluation) and quantitatively (vessel volume measurements). The two other algorithms (‘Slicer’ and ‘SEMI’), based on the normalised mutual information (NMI) concept and designed specifically to deal with variations in signal intensity as found in contrast-enhanced image data, did not suffer from this serious issue but were rather found to significantly improve the diagnostic image quality both qualitatively and quantitatively, and demonstrated a significantly improved ability to deal with the common problem of patient motion.ConclusionsThis work highlights both the significant benefits to be gained through the use of suitable registration algorithms and the deleterious effects of an inappropriate choice of algorithm for contrast-enhanced MRI data. The maximum benefit was found in the lower legs, where the small arterial vessel diameters and propensity for leg movement during image acquisitions posed considerable problems in making accurate diagnoses from the un-registered images.  相似文献   

7.
PurposeDiagnostic positron emission tomography and computed tomography (PET/CT) images can be fused to the planning CT images by a deformable image registration (DIR). The aim of this study was to evaluate the standardized uptake value (SUV) and target delineation on deformed PET images.MethodsWe used a cylindrical phantom and removable inserts of four spheres (16–38 mm in diameter) and three ellipsoids with a volume equal to the 38-mm-diameter sphere (S38) in each. S38 was filled with 18F-fluorodeoxyglucose activity, and then PET/CT images were acquired. The contours of S38 were generated using original PET images by PET auto-segmentation (PET-AS) methods of (1) SUV2.5, (2) 40% of maximum SUV (SUV40%max), and (3) gradient-based (GB), and were deformed to the other inserts by DIR. We compared the volumes and the SUVmax with the generated contours using the deformed PET images.ResultsThe SUVmax was slightly decreased by DIR; the mean absolute difference was −0.10 ± 0.04. For SUV2.5 and SUV40%max, the differences in S38 volumes between the original and deformed PET images were less than 5%, regardless of deformation type. For the GB, the contoured volumes obtained from deformed PET images were larger than those of the original PET images for the deformation type of ellipsoids. When the S38 was deformed to the 16-mm-diameter sphere, the maximum volume difference was −22.8%.ConclusionsAlthough SUV fluctuations by DIR were negligible, the target delineation on deformed PET images by the GB should be carefully considered owing to the distortion of intensity profiles.  相似文献   

8.
PurposeTo develop an automatic multimodal method for segmentation of parotid glands (PGs) from pre-registered computed tomography (CT) and magnetic resonance (MR) images and compare its results to the results of an existing state-of-the-art algorithm that segments PGs from CT images only.MethodsMagnetic resonance images of head and neck were registered to the accompanying CT images using two different state-of-the-art registration procedures. The reference domains of registered image pairs were divided on the complementary PG regions and backgrounds according to the manual delineation of PGs on CT images, provided by a physician. Patches of intensity values from both image modalities, centered around randomly sampled voxels from the reference domain, served as positive or negative samples in the training of the convolutional neural network (CNN) classifier. The trained CNN accepted a previously unseen (registered) image pair and classified its voxels according to the resemblance of its patches to the patches used for training. The final segmentation was refined using a graph-cut algorithm, followed by the dilate-erode operations.ResultsUsing the same image dataset, segmentation of PGs was performed using the proposed multimodal algorithm and an existing monomodal algorithm, which segments PGs from CT images only. The mean value of the achieved Dice overlapping coefficient for the proposed algorithm was 78.8%, while the corresponding mean value for the monomodal algorithm was 76.5%.ConclusionsAutomatic PG segmentation on the planning CT image can be augmented with the MR image modality, leading to an improved RT planning of head and neck cancer.  相似文献   

9.
Background and purposeTo compare the accuracy of the Block Matching deformable registration (DIR) against rigid image registration (RIR) for head-and-neck multi-modal images CT to cone-beam CT (CBCT) registration.Material and methodsPlanning-CT and weekly CBCT of 10 patients were used for this study. Several volumes, including medullary canal (MC), thyroid cartilage (TC), hyoid bone (HB) and submandibular gland (SMG) were transposed from CT to CBCT images using either DIR or RIR. Transposed volumes were compared with the manual delineation of these volumes on every CBCT. The parameters of similarity used for analysis were: Dice Similarity Index (DSI), 95%-Hausdorff Distance (95%-HD) and difference of volumes (cc).ResultsWith DIR, the major mean difference of volumes was −1.4 cc for MC, revealing limited under-segmentation. DIR limited variability of DSI and 95%-HD. It significantly improved DSI for TC and HB and 95%-HD for all structures but SMG. With DIR, mean 95%-HD (mm) was 3.01 ± 0.80, 5.33 ± 2.51, 4.99 ± 1.69, 3.07 ± 1.31 for MC, TC, HB and SMG, respectively. With RIR, it was 3.92 ± 1.86, 6.94 ± 3.98, 6.44 ± 3.37 and 3.41 ± 2.25, respectively.ConclusionBlock Matching is a valid algorithm for deformable multi-modal CT to CBCT registration. Values of 95%-HD are useful for ongoing development of its application to the cumulative dose calculation.  相似文献   

10.
A greyscale-based fully automatic deformable image registration algorithm, based on an optical flow method together with geometric smoothing, is developed for dynamic lung modeling and tumor tracking. In our computational processing pipeline, the input data is a set of 4D CT images with 10 phases. The triangle mesh of the lung model is directly extracted from the more stable exhale phase (Phase 5). In addition, we represent the lung surface model in 3D volumetric format by applying a signed distance function and then generate tetrahedral meshes. Our registration algorithm works for both triangle and tetrahedral meshes. In CT images, the intensity value reflects the local tissue density. For each grid point, we calculate the displacement from the static image (Phase 5) to match with the moving image (other phases) by using merely intensity values of the CT images. The optical flow computation is followed by a regularization of the deformation field using geometric smoothing. Lung volume change and the maximum lung tissue movement are used to evaluate the accuracy of the application. Our testing results suggest that the application of deformable registration algorithm is an effective way for delineating and tracking tumor motion in image-guided radiotherapy.  相似文献   

11.
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.  相似文献   

12.
Rationale and objectivesDedicated breast CT and PET/CT scanners provide detailed 3D anatomical and functional imaging data sets and are currently being investigated for applications in breast cancer management such as diagnosis, monitoring response to therapy and radiation therapy planning. Our objective was to evaluate the performance of the diffeomorphic demons (DD) non-rigid image registration method to spatially align 3D serial (pre- and post-contrast) dedicated breast computed tomography (CT), and longitudinally-acquired dedicated 3D breast CT and positron emission tomography (PET)/CT images.MethodsThe algorithmic parameters of the DD method were optimized for the alignment of dedicated breast CT images using training data and fixed. The performance of the method for image alignment was quantitatively evaluated using three separate data sets; (1) serial breast CT pre- and post-contrast images of 20 women, (2) breast CT images of 20 women acquired before and after repositioning the subject on the scanner, and (3) dedicated breast PET/CT images of 7 women undergoing neo-adjuvant chemotherapy acquired pre-treatment and after 1 cycle of therapy.ResultsThe DD registration method outperformed no registration (p < 0.001) and conventional affine registration (p ≤ 0.002) for serial and longitudinal breast CT and PET/CT image alignment. In spite of the large size of the imaging data, the computational cost of the DD method was found to be reasonable (3–5 min).ConclusionsCo-registration of dedicated breast CT and PET/CT images can be performed rapidly and reliably using the DD method. This is the first study evaluating the DD registration method for the alignment of dedicated breast CT and PET/CT images.  相似文献   

13.
《IRBM》2022,43(2):130-141
Background and ObjectiveAs is known, point clouds representing the objects are frequently used in object registration. Although the objects can be registered by using all the points in the corresponding point clouds of the objects, the registration process can also be achieved with a smaller number of the landmark points selected from the entire point clouds of the objects. This paper introduces a research study focusing on the fast and accurate rigid registration of the bilateral proximal femurs in bilateral hip joint images by using the random sub-sample points. For this purpose, Random Point Sub-sampling (RPS) was analyzed and the reduced point sets were used for an accurate registration of the bilateral proximal femurs in coronal hip joint magnetic resonance imaging (MRI) slices.MethodsIn registration, bilateral proximal femurs in MRI slices were registered rigidly by performing a process consisting of three main phases named as MR image preprocessing, proximal femur registration over the random sub-sample points and MR image postprocessing. In the stage of the MR image preprocessing, segmentation maps of the bilateral proximal femurs are obtained as region of interest (RoI) images from the entire MRI slices and then, the edge maps of the segmented proximal femurs are extracted. In the registration phase, the edge maps describing the proximal femur surfaces are represented as point clouds initially. Thereafter, the RPS is performed on the proximal femur point clouds and the number of points representing the proximal femurs is reduced at different ratios. For the registration of the point clouds, the Iterative Closest Point (ICP) algorithm is performed on the reduced sets of points. Finally, the registration procedures are completed by performing MR image postprocessing on the registered proximal femur images.ResultsIn performance evaluation tests performed on healthy and pathological proximal femurs in 13 bilateral coronal hip joint MRI slices of 13 Legg-Calve-Perthes disease (LCPD) patients, bilateral proximal femurs were successfully registered with very small error rates by using the reduced set of points obtained via the RPS and promising results were achieved. The minimum error rate was observed at RPS rate of 30% as the value of 0.41 (±0.31)% on all over the bilateral proximal femurs evaluated. When the range of RPS rate of 20-30% is considered as the reference, the elapsed time in registration can be reduced by almost 30-40% compared to the case where all the proximal femur points were included in registration. Additionally, it was observed that the RPS rate should be selected as at least 25% to achieve a successful registration with an error rate below 1%.ConclusionIt was concluded from the observed results that a more successful and faster registration can be accomplished by selecting fewer points randomly from the point sets of proximal femurs instead of using all the points describing the proximal femurs. Not only an accurate registration with low error rates was performed, but also a faster registration process was performed by means of the limited number of points that are sub-sampled randomly from the whole point sets.  相似文献   

14.
PurposeIn this study, a 3D phase correlation algorithm was investigated to test feasibility for use in determining the anatomical changes that occur throughout a patient's radiotherapy treatment. The algorithm determines the transformations between two image volumes through analysis in the Fourier domain and has not previously been used in radiotherapy for 3D registration of CT and CBCT volumes.MethodsVarious known transformations were applied to a patient's prostate CT image volume to create 12 different test cases. The mean absolute error and standard deviation were determined by evaluating the difference between the known contours and those calculated from the registration process on a point-by-point basis. Similar evaluations were performed on images with increasing levels of noise added. The improvement in structure overlap offered by the algorithm in registering clinical CBCT to CT images was evaluated using the Dice Similarity Coefficient (DSC).ResultsA mean error of 2.35 (σ = 1.54) mm was calculated for the 12 deformations applied. When increasing levels of noise were introduced to the images, the mean errors were observed to rise up to a maximum increase of 1.77 mm. For CBCT to CT registration, maximum improvements in the DSC of 0.09 and 0.46 were observed for the bladder and rectum, respectively.ConclusionsThe Fourier-based 3D phase correlation registration algorithm investigated displayed promising results in CT to CT and CT to CBCT registration, offers potential in terms of efficiency and robustness to noise, and is suitable for use in radiotherapy for monitoring patient anatomy throughout treatment.  相似文献   

15.
医学图像融合配准技术   总被引:1,自引:0,他引:1  
图像融合技术在现代医学中扮演着极其重要的角色,是现代医学图像技术研究的重点。图像融合技术中,图像的配准又是其中的重点、难点和热点。本文按照图像变换特性对图像配准进行了分类,对每个类别的不同配准方法(特征点的获取、图像配准的变换等)进行介绍。但是,图像配准是一个尚处在发展阶段的学科,实现配准的精确化、快速化、自动化仍需要进一步的努力。  相似文献   

16.
IntroductionDeformable image registration (DIR) can play an important role in the context of adaptive radiotherapy. The AAPM Task Group 132 (TG-132) has described several quantitative measures for DIR error assessment but they can only be accurately defined when there is a ground-truth present in high-contrast regions. This work aims to set out a framework to obtain optimal results for CT-CT lung DIR in clinical setting for a commercially available system by quantifying the DIR performance in both low- and high-contrast regions.MethodsFive publicly available thorax datasets were used to assess the DIR quality. A “Ghost fiducial” method was implemented by windowing the contrast in a new feature provided by Varian Velocity v4.1. Target registration error (TRE) of the landmarks and Dice-similarity coefficient of the tumour were calculated at three different contrast settings to assess the algorithm in high- and low-contrast scenarios.ResultsFor the original unedited dataset, higher resolution DIR methods showed best performance acceptable within the recommended limit according to TG-132, when actual displacements were less than 10 mm. The relation of the actual displacement of the landmarks and TRE shows the limited capacity of the algorithm to deal with movements larger than 10 mm.ConclusionThis work found the performance of DIR methods and settings available in Varian Velocity v4.1 to be a function of contrast level as well as extent of motion. This highlights the need for multiple metrics to assess different aspects of DIR performance for various applications related to low-contrast and/or high-contrast regions.  相似文献   

17.
Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations.  相似文献   

18.
In this review, we summarize original methods for the extraction of quantitative information from confocal images of gene-expression patterns. These methods include image segmentation, the extraction of quantitative numerical data on gene expression, and the removal of background signal and spatial registration. Finally, it is possible to construct a spatiotemporal atlas of gene expression from individual images recorded at each developmental stage. Initially all methods were developed to extract quantitative numerical information from confocal images of segmentation gene expression in Drosophila melanogaster. The application of these methods to Drosophila images makes it possible to reveal new mechanisms in the formation of segmentation gene expression domains, as well as to construct a quantitative atlas of segmentation gene expression. Most image processing procedures can be easily adapted to process a wide range of biological images.  相似文献   

19.
Multi-modality microscopes incorporate multiple microscopy techniques into one module, imaging through a common objective lens. Simultaneous or consecutive image acquisition of a single specimen, using multiple techniques, increases the amount of measurable information available. In order to benefit from each modality, it is necessary to accurately co-register data sets. Intrinsic differences in the image formation process employed by each modality result in images which possess different characteristics. In addition, as a result of using different measurement devices, images often differ in size and can suffer relative geometrical deformations including rotation, scale and translation, making registration a complex problem. Current methods generally rely on manual input and are therefore subject to human error. Here, we present an automated image registration tool for fluorescence microscopy. We show that it successfully registers images obtained via total internal reflection fluorescence (TIRF), or epi-fluorescence, and confocal microscopy. Furthermore, we provide several other applications including channel merging following image acquisition through an emission beam splitter, and lateral stage drift correction. We also discuss areas of membrane trafficking which could benefit from application of Auto-Align. Auto-Align is an essential item in the advanced microscopist's toolbox which can create a synergy of single or multi-modality image data.  相似文献   

20.
This paper presents a review of automated image registration methodologies that have been used in the medical field. The aim of this paper is to be an introduction to the field, provide knowledge on the work that has been developed and to be a suitable reference for those who are looking for registration methods for a specific application. The registration methodologies under review are classified into intensity or feature based. The main steps of these methodologies, the common geometric transformations, the similarity measures and accuracy assessment techniques are introduced and described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号