首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a systematic study of the influence of electron‐transport materials on the operation stability of the inverted perovskite solar cells under both laboratory indoor and the natural outdoor conditions in the Negev desert. It is shown that all devices incorporating a Phenyl C61 Butyric Acid Methyl ester ([60]PCBM) layer undergo rapid degradation under illumination without exposure to oxygen and moisture. Time‐of‐flight secondary ion mass spectrometry depth profiling reveals that volatile products from the decomposition of methylammonium lead iodide (MAPbI3) films diffuse through the [60]PCBM layer, go all the way toward the top metal electrode, and induce its severe corrosion with the formation of an interfacial AgI layer. On the contrary, alternative electron‐transport material based on the perylendiimide derivative provides good isolation for the MAPbI3 films preventing their decomposition and resulting in significantly improved device operation stability. The obtained results strongly suggest that the current approach to design inverted perovskite solar cells should evolve with respect to the replacement of the commonly used fullerene‐based electron‐transport layers with other types of materials (e.g., functionalized perylene diimides). It is believed that these findings pave a way toward substantial improvements in the stability of the perovskite solar cells, which are essential for successful commercialization of this photovoltaic technology.  相似文献   

2.
Diketopyrrolopyrrole (DPP)‐conjugated polymers are a versatile class of semiconductors for application in organic solar cells because of their tunable optoelectronic properties. A record power conversion efficiency (PCE) of 9.4% was recently achieved for DPP polymers, but further improvements are required to reach true efficiency limits. Using five DPP polymers with different chemical structures and molecular weights, the device performance of polymer:fullerene solar cells is systematically optimized by considering device polarity, morphology, and light absorption. The polymer solubility is found to have a significant effect on the optimal device polarity. Soluble polymers show a 10–25% increase in PCE in inverted device configurations, while the device performance is independent of device polarity for less soluble DPP derivatives. The difference seems related to the polymer to fullerene weight ratio at the ZnO interface in inverted devices, which is higher for more soluble DPP polymers. Optimization of the nature of the cosolvent to narrow the fibril width of polymers in the blends toward the exciton diffusion length enhances charge generation. Additionally, the use of a retroreflective foil increases absorption of light. Combined, the effects afford a PCE of 9.6%, among the highest for DPP‐based polymer solar cells.  相似文献   

3.
The effects of alkyl chain regiochemistry on the properties of donor polymers and performances of non‐fullerene organic solar cells are investigated. Two donor polymers (PfBTAZ and PfBTAZS) are compared that have nearly identical chemical structures except for the regiochemistry of alkyl chains. The optical properties and crystallinity of two polymers are nearly identical yet the PfBTAZ:O‐IDTBR blend exhibits nearly double domain size compared to the blend based on PfBTAZS:O‐IDTBR. To reveal the origins of the very different domain size of two blends, the morphology of neat polymer films is characterized, and it is found that PfBTAZ tends to aggregate into much larger polymer fibers without the presence of O‐IDTBR. This indicates that it is not the polymer:O‐IDTBR interactions but the intrinsic aggregation properties of two polymers that determine the morphology features of neat and blend films. The stronger aggregation tendency of PfBTAZ could be explained by its more co‐planar geometry of the polymer backbone arising from the different alkyl chain regiochemistry. Combined with the similar trend observed in another set of donor polymers (PTFB‐P and PTFB‐PS), the results provide an important understanding of the structure–property relationships that could guide the development of donor polymers for non‐fullerene organic solar cells.  相似文献   

4.
Metal halide perovskite solar cells (PSCs) have emerged as promising candidates for photovoltaic technology with their power conversion efficiencies over 23%. For prototypical organic–inorganic metal halide perovskites, their intrinsic instability poses significant challenges to the commercialization of PSCs. Recently, the scientific community has done tremendous work in composition engineering to develop more robust light‐absorbing layers, including mixed‐ion hybrid perovskites, low‐dimensional hybrid perovskites, and all‐inorganic perovskites. This review provides an overview of the impact of these perovskites on the efficiency and long‐term stability of PSCs.  相似文献   

5.
Chemical bonding dictates not only the optoelectronic properties of materials, but also the intrinsic and extrinsic stability of materials. Here, the causes of intrinsic and extrinsic instability of perovskite materials are reviewed considering their correlation with the unique chemical‐bonding nature of perovskite materials. There are a number of key standardized stability tests established by the International Electrotechnical Commission for commercialized photovoltaic modules. Based on these procedures, the possible causes and related mechanisms of the material degradation that can arise during the test procedures are identified, which are discussed in terms of their chemical bonds. Based on the understanding of the critical causes, promising strategies for mitigating the causes to enhance the stability of perovskite solar cells are summarized. The stability of the state‐of‐the‐art perovskite solar cells implies a need for the development of improved stability‐testing protocols to move onto the next stage toward commercialization.  相似文献   

6.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   

7.
Organic photovoltaics (OPV) represent a thin‐film PV technology that offers attractive prospects for low‐cost and aesthetically appealing (colored, flexible, uniform, semitransparent) solar cells that are printable on large surfaces. In bulk heterojunction (BHJ) OPV devices, organic electron donor and acceptor molecules are intimately mixed within the photoactive layer. Since 2005, the power conversion efficiency of said devices has increased substantially due to insights in the underlying physical processes, device optimization, and chemical engineering of a vast number of novel light‐harvesting organic materials, either small molecules or conjugated polymers. As Nature itself has developed porphyrin chromophores for solar light to energy conversion, it seems reasonable to pursue artificial systems based on the same types of molecules. Porphyrins and their analogues have already been successfully implemented in certain device types, notably in dye‐sensitized solar cells, but they have remained largely unexplored in BHJ organic solar cells. Very recent successes do show, however, the strong (latent) prospects of porphyrinoid semiconductors as light‐harvesting and charge transporting materials in such devices. Here, an overview on the state‐of‐the‐art of porphyrin‐based solution‐processed BHJ OPV is provided and insights are given into the pathways to follow and hurdles to overcome toward further improvements of porphyrinic materials and devices.  相似文献   

8.
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper‐based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells.  相似文献   

9.
The photoinduced open‐circuit voltage (Voc) loss commonly observed in bulk heterojunction organic solar cells made from amorphous polymers is investigated. It is observed that the total charge carrier density and, importantly, the recombination dynamics are unchanged by photoinduced burn‐in. Charge extraction is used to monitor changes in the density of states (DOS) during degradation of the solar cells, and a broadening over time is observed. It is proposed that the Voc losses observed during burn‐in are caused by a redistribution of charge carriers in a broader DOS. The temperature and light intensity dependence of the Voc losses can be described with an analytical model that contains the amount of disorder broadening in a Gaussian DOS as the only fit parameter. Finally, the Voc loss in solar cells made from amorphous and crystalline polymers is compared and an increased stability observed in crystalline polymer solar cells is investigated. It is found that solar cells made from crystalline materials have a considerably higher charge carrier density than those with amorphous materials. The effects of a DOS broadening upon aging are suppressed in solar cells with crystalline materials due to their higher carrier density, making crystalline materials more stable against Voc losses during burn‐in.  相似文献   

10.
In recent years, solution‐processed conjugated polymers have been extensively used as anode interfacial layer (AIL) materials in organic solar cells (OSCs) due to their excellent film‐forming property and low‐temperature processing advantages. In this review, the authors focus on the recent advances in conjugated polymers as AIL materials in OSCs. Several of the main classes of solution‐processable conjugated polymers, including poly(3,4‐ethylenedioxythiophene):(styrenesulfonate), polyaniline, polythiophene, conjugated polyelectrolytes, sulfonated poly(diphenylamine), and crosslinked polymers as AIL materials are discussed in depth, and the mechanisms of these AIL materials in enhancing OSC performances are also elucidated. The structure–property relationships of various conjugated polymer AIL materials are analyzed, and some important design rules for such materials toward high efficiencies and stable OSCs are presented. In addition, some chemical and physical approaches to optimize the photoelectronic and physic properties of conjugated polymer AIL materials, which improve their performance in modifying OSCs, are also highlighted. Considering the significance of tandem OSCs, the relevant applications of conjugated polymer AIL materials in constructing interconnection layers for tandem OSCs are also mentioned. Finally, a brief summary is presented and some perspectives to help researchers understand the current challenges and opportunities in this area are proposed.  相似文献   

11.
The application of conjugated polymer and fullerene water‐based nanoparticles (NP) as ecofriendly inks for organic photovoltaics (OPVs) is reported. A low bandgap polymer diketopyrrolopyrrole–quinquethiophene (PDPP5T‐2) and the methanofullerene PC71BM are processed into three types of nanoparticles: pristine fullerene NPs, pristine polymer NPs, and mixed polymer:fullerene NPs, allowing the formation of bulk heterojunction (BHJ) composites with different domain sizes. Mild thermal annealing is required to melt the nanospheres and enable the formation of interconnected pathways within mixed phases. This BHJ is accompanied by a shrinkage of film, whereas the more compact layers show enhanced mobility. Consistently reduced recombination and better performance are found for mixed NP, containing both, the polymer and the fullerene within a single NP. The optimized solar cell processed by ultrasmall NPs delivers a power conversion efficiency of about 3.4%. This is among the highest values reported for aqueous processed OPVs but still lacks performance compared to those being processed from halogenated solvents. Incomplete crystallization is identified as the main root for reduced efficiency. It is nevertheless believed that postprocessing does not cut attraction from printing aqueous organic NP inks as a trendsetting strategy for the reliable and ecofriendly production of organic solar cells.  相似文献   

12.
A common phenomenon of organic solar cells (OSCs) incorporating metal‐oxide electron extraction layers is the requirement to expose the devices to UV light in order to improve device characteristics – known as the so‐called “light‐soaking” issue. This behaviour appears to be of general validity for various metal‐oxide layers, various organic donor/acceptor systems, and regardless if single junction devices or multi stacked cells are considered. The requirement of UV exposure of OSCs may impose severe problems if substrates with limited UV transmission, UV blocking filters or UV to VIS down‐conversion concepts are applied. In this paper, we will demonstrate that this issue can be overcome by the use of Al doped ZnO (AZO) as electron extraction interlayer. In contrast to devices based on TiOx and ZnO, the AZO devices show well‐behaved solar cell characteristics with a high fill factor (FF) and power conversion efficiency (PCE) even without the UV spectral components of the AM1.5 solar spectrum. As opposed to previous claims, our results indicate that the origin of s‐shaped characteristics of the OSCs is the metal‐oxide/organic interface. The electronic structures of the TiOx/fullerene and AZO/fullerene interfaces are studied by photoelectron spectroscopy, revealing an electron extraction barrier for the TiOx/fullerene case and facilitated electron extraction for AZO/fullerene. These results are of general relevance for organic solar cells based on various donor acceptor active systems.  相似文献   

13.
While recent reports have established significant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and small‐molecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is sufficient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:non‐fullerene blends, including those with both conjugated and non‐conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer–fullerene interactions can exist, and the calculations point to van der Waals interactions as a significant driving force for molecular mixing.  相似文献   

14.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

15.
Compared to inorganic semiconductors and/or fullerene derivatives, nonfullerene n‐type organic semiconductors present some advantages, such as low‐temperature processing, flexibility, and molecule structure diversity, and have been widely used in perovskite solar cells (PSCs). In this research news article, the recent advances in nonfullerene n‐type organic semiconductors which function as electron‐transporting, interface‐modifying, additive, and light‐harvesting materials in PSCs are summarized. The remaining challenges and promising future directions of nonfullerene‐based PSCs are also discussed.  相似文献   

16.
Long device lifetime is still a missing key requirement in the commercialization of nonfullerene acceptor (NFA) organic solar cell technology. Understanding thermodynamic factors driving morphology degradation or stabilization is correspondingly lacking. In this report, thermodynamics is combined with morphology to elucidate the instability of highly efficient PTB7‐Th:IEICO‐4F binary solar cells and to rationally use PC71BM in ternary solar cells to reduce the loss in the power conversion efficiency from ≈35% to <10% after storage for 90 days and at the same time improve performance. The hypomiscibility observed for IEICO‐4F in PTB7‐Th (below the percolation threshold) leads to overpurification of the mixed domains. By contrast, the hypermiscibility of PC71BM in PTB7‐Th of 48 vol% is well above the percolation threshold. At the same time, PC71BM is partly miscible in IEICO‐4F suppressing crystallization of IEICO‐4F. This work systematically illustrates the origin of the intrinsic degradation of PTB7‐Th:IEICO‐4F binary solar cells, demonstrates the structure–function relations among thermodynamics, morphology, and photovoltaic performance, and finally carries out a rational strategy to suppress the degradation: the third component needs to have a miscibility in the donor polymer at or above the percolation threshold, yet also needs to be partly miscible with the crystallizable acceptor.  相似文献   

17.
The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 °C in bulk heterojunctions based on the benzodithiophene‐based polymer (the poly[[4,8‐bis[(2‐ethylhexyl)oxy]‐benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7:PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 °C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  相似文献   

18.
Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene‐based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene‐based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA‐based composites that enable devices without early performance loss, thus resembling so‐called burn‐in free devices.  相似文献   

19.
A new strategy for designing ternary solar cells is reported in this paper. A low‐bandgap polymer named PTB7‐Th and a high‐bandgap polymer named PBDTTS‐FTAZ sharing the same bulk ionization potential and interface positive integer charge transfer energy while featuring complementary absorption spectra are selected. They are used to fabricate efficient ternary solar cells, where the hole can be transported freely between the two donor polymers and collected by the electrode as in one broadband low bandgap polymer. Furthermore, the fullerene acceptor is chosen so that the energy of the positive integer charge transfer state of the two donor polymers is equal to the energy of negative integer charge transfer state of the fullerene, enabling enhanced dissociation of all polymer donor and fullerene acceptor excitons and suppressed bimolecular and trap assistant recombination. The two donor polymers feature good miscibility and energy transfer from high‐bandgap polymer of PBDTTS‐FTAZ to low‐bandgap polymer of PTB7‐Th, which contribute to enhanced performance of the ternary solar cell.  相似文献   

20.
The large voltage losses usually encountered in organic solar cells significantly limit the power conversion efficiencies (PCEs) of these devices, with the result that the current highest PCE values in single‐junction organic photovoltaic remain smaller than for other solar cell technologies, such as crystalline silicon or perovskite solar cells. In particular, the nonradiative recombinations to the electronic ground state from the lowest‐energy charge‐transfer (CT) states at the donor–acceptor interfaces in the active layer of organic devices, are responsible for a significant part of the voltage losses. Here, to better comprehend the nonradiative voltage loss mechanisms, a fully quantum‐mechanical rate formula is employed within the framework of time‐dependent perturbation theory, combined with density functional theory. The objective is to uncover the specific contributions of intramolecular vibrations to the CT‐state nonradiative recombinations in several model systems, which include small‐molecule and polymer donors as well as fullerene and nonfullerene acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号