首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An LBO (Li2B4O7) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm2, i.e., from the chamber response divided by neutron fluence (cm?2). The measured LBO chamber sensitivities were 2.23 × 10?7 ± 0.34 × 10?7 (pC cm2) for thermal neutrons and 2.00 × 10?5 ± 0.12 × 10?5 (pC cm2) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.  相似文献   

2.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

3.
AimThe feasibility of using 230 MeV proton cyclotrons in proton therapy centers as a spallation neutron source for Boron Neutron Capture Therapy (BNCT) was investigated.BackgroundBNCT is based on the neutron irradiation of a 10B-containing compound located selectively in tumor cells. Among various types of neutron generators, the spallation neutron source is a unique way to generate high-energy and high-flux neutrons.Materials and MethodsNeutron beam was generated by a proton accelerator via spallation reactions and then the produced neutron beam was shaped to be appropriate for BNCT. The proposed Beam Shaping Assembly (BSA) consists of different moderators, a reflector, a collimator, as well as thermal and gamma filters. In addition, the simulated Snyder head phantom was utilized to evaluate the dose distribution in tumor and normal tissue due to the irradiation by the designed beam. MCNPX2.6 Monte Carlo code was used to optimize BSA as well as evaluate dose evaluation.ResultsA BSA was designed. With the BSA configuration and a beam current of 104 nA, epithermal neutron flux of 3.94 × 106 [n/cm2] can be achieved, which is very low. Provided that we use the beam current of 5.75 μA, epithermal neutron flux of 2.18 × 108 [n/cm2] can be obtained and the maximum dose of 38.2 Gy-eq can be delivered to tumor tissue at 1.4 cm from the phantom surface.ConclusionsResults for 230 MeV protons show that with proposed BSA, proton beam current about 5.75 μA is required for this purpose.  相似文献   

4.
PurposeWe simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently.MethodsWe simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture.For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared.ResultsIn the evaluations of body movements, there were no significant differences even with shifting up to 9 mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9 mm in a direction away from the irradiation aperture.When comparing both calculations in the phantom surface up to 3 cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation.ConclusionsIn the evaluation, the longitudinal displacement has a considerable effect on the organ doses.We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code.  相似文献   

5.
A comparison of seven epithermal neutron beams used in clinical studies of boron neutron capture therapy (BNCT) in Sweden (Studsvik), Finland (Espoo), Czech Republic (ReZ), The Netherlands (Petten) and the U.S. (Brookhaven and Cambridge) was performed to facilitate sharing of preclinical and clinical results. The physical performance of each beam was measured using a common dosimetry method under conditions pertinent to brain irradiations. Neutron fluence and absorbed dose measurements were performed with activation foils and paired ionization chambers on the central axis both in air and in an ellipsoidal water phantom. The overall quality of each beam was assessed by figures of merit determined from the total weighted dose profiles that assumed the presence of boron in tissue. The in-air specific beam contamination from both fast neutrons and gamma rays ranged between 8 and 65 x 10(-11) cGy(w) cm2 for the different beams and the epithermal neutron flux intensities available at the patient position differed by more than a factor of 20 from 0.2-4.3 x 10(9) n cm(-2) s(-1). Percentage depth dose profiles measured in-phantom for the individual photon, thermal and fast-neutron dose components differed only subtly in shape between facilities. Assuming uptake characteristics consistent with the currently used boronated phenylalanine, all the epithermal beams exhibit a useful penetration of 8 cm or greater that is sufficient to irradiate a lesion seated at the brain midline. The performance of the existing facilities will benefit from the introduction of advanced compounds through improved beam penetrability. This could increase by as much as 2 cm for the purest of beams, although the beam intensities generally need to be increased to between 2-5 x 10(9) n cm(-2) s(-1) to maintain manageable irradiation times. These data provide the first consistent measurement of beam performance at the different centers and will enable a preliminary normalization of the calculated patient dosimetry.  相似文献   

6.
AimEvaluation of energy deposition of protons in human brain and calculation of the secondary neutrons and photons produced by protons in proton therapy.BackgroundRadiation therapy is one of the main methods of treating localized cancer tumors. The use of high energy proton beam in radiotherapy was proposed almost 60 years ago. In recent years, there has been a revival of interest in this subject in the context of radiation therapy. High energy protons suffer little angular deflection and have a well-defined penetration range, with a sharp increase in the energy loss at the end of their trajectories, namely the Bragg peak.Materials and methodsA slab head phantom was used for the purpose of simulating proton therapy in brain tissue. In this study simulation was carried out using the Monte Carlo MCNPX code.ResultsBy using mono energetic proton pencil beams, energy depositions in tissues, especially inside the brain, as well as estimating the neutron and photon production as a result of proton interactions in the body, together with their energy spectra, were calculated or obtained. The amount of energy escaped from the head by secondary neutrons and photons was determined.ConclusionsIt was found that for high energy proton beams the amount of escaped energy by neutrons is almost 10 times larger than that by photons. We estimated that at 110 MeV beam energy, the overall proton energy “leaked” from the head by secondary photons and neutrons to be around 1%.  相似文献   

7.
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.  相似文献   

8.
This investigation was designed to determine the relative biological effectiveness (RBE) of an epithermal neutron beam (FiR 1 beam) using the brains of dogs. The FiR 1 beam was developed for the treatment of patients with glioma using boron neutron capture therapy. Comparisons were made between the effects of whole-brain irradiation with epithermal neutrons and 6 MV photons. For irradiations with epithermal neutrons, three dose groups were used, 9.4 +/- 0.1, 10.2 +/- 0.1 and 11.5 +/- 0.2 Gy. These physical doses were given as a single exposure and are quoted at the 90% isodose. Four groups of five dogs were irradiated with single doses of 10, 12, 14 or 16 Gy of 6 MV photons to the 100% isodose. Different reference isodoses were used to obtain the most comparable dose distribution in the brain for the two different irradiation modalities. Sequential magnetic resonance images (MRI) were taken for 77-115 weeks after irradiation to detect changes in the brain. Dose-effect relationships were established for changes in the brain as detected either by MRI or by subsequent gross morphology and histology. The doses that caused a specified response in 50% of the animals (ED(50)) were calculated from these dose-effect curves for each end point, and these values were used to calculate the RBE values for the different end points. The RBE values for the FiR 1 beam, based on changes observed on MRI, were in the range 1.2-1.3. For microscopic and gross pathological lesions, the values were in the range 1.2-1.4. The corresponding RBE values for the MRI and pathological end points for the high-LET components (protons from nitrogen capture and recoil protons from fast neutrons) were in the ranges 3.5-4.0 and 3.4-4.4, respectively. This assumed a dose-rate reduction factor of 0.6 for the low-dose-rate gamma-ray component of this beam. Finally, a comparison was made between experimentally derived photon doses, for a specified end point, with calculated photon equivalent doses, which were obtained using the weighting factors for clinical studies on the epithermal neutron beam on the Brookhaven Medical Research Reactor (BNL) in New York. This indicated that the radiation-induced lesions seen in the present study were, on average, detected at a 12% lower photon dose than predicted by the use of the BNL clinical weighting factors. This indicates the need for caution in the extrapolation of results from one reactor-based epithermal neutron beam to another.  相似文献   

9.
In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature.  相似文献   

10.

Aim

To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness.

Background

Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient.

Materials and methods

Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment.Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body.

Results

Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1.The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment.

Conclusions

The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer.  相似文献   

11.
PurposeThis study aims to investigate the energy response of an optically stimulated luminescent dosimeter known as nanoDot for diagnostic kilovoltage X-ray beams via Monte Carlo calculations.MethodsThe nanoDot response is calculated as a function of X-ray beam quality in free air and on a water phantom surface using Monte Carlo simulations. The X-ray fluence spectra are classified using the quality index (QI), which is defined as the ratio of the effective energy to the maximum energy of the photons. The response is calculated for X-ray fluence spectra with QIs of 0.4, 0.5, and 0.6 with tube voltages of 50–137.6 kVp and monoenergetic photon beams. The surface dose estimated using the calculated response is verified by comparing it with that measured using an ionization chamber.ResultsThe nanoDot response in free air for monoenergetic photon beams (QI = 1.0) varies significantly at photon energies below 100 keV and reaches a factor of 3.6 at 25–30 keV. The response differs by up to approximately 6% between QIs of 0.4 and 0.6 for the same half-value layer (HVL). The response at the phantom surface decreases slightly owing to the backscatter effect, and it is almost independent of the field size. The agreement between the surface dose estimated using the nanoDot and that measured using the ionization chamber for assessing X-ray beam qualities is less than 2%.ConclusionsThe nanoDot response is indicated as a function of HVL for the specified QIs, and it enables the direct surface dose measurement.  相似文献   

12.
Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.  相似文献   

13.

Aim

Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity.

Background

Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam.

Materials and methods

We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom.

Results

Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0–2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening.

Conclusions

This study explores the spectral relationships of surface photon energy and energy fluence with bone heterogeneity and beam obliquity for the flattened and unflattened photon beams. The photon spectral information is important in studies on the patient''s surface dose enhancement using unflattened photon beams in radiotherapy.  相似文献   

14.
PurposeTo evaluate the neutron dose equivalent produced by photoneutrons inside the primary barriers of a radiotherapy vault.MethodsMonte Carlo simulations were performed for investigating the production of photoneutrons as well as neutron shielding requirements. Two photon beams of 15 and 18 MV struck sheets of steel and lead, and the neutron doses were calculated at the isocenter (Piso) and at a distance of 50 cm from the inside wall (Pwall) while delivering 1 Gy to the patient. The proper thicknesses of borated polyethylene (BPE) and concrete were simulated to reduce neutron contamination.ResultsWhen the primary barrier consisted of a concrete alone, the neutron doses at Piso were 0.5 μSv/Gy and 12.8 μSv/Gy for 15- and 18-MV, respectively. At Pwall, the neutron doses were 15.8 μSv/Gy and 318.4 μSv/Gy for 15- and 18-MV, respectively. When 15 MV photons interacted with metal sheets, the neutron doses were 0.4–22.2 μSv/Gy at Piso and 15.8–812.5 μSv/Gy at Pwall, depending on the thickness and material of the metal sheets and neutron shielding. In the case of 18 MV photons with the same configuration, the neutron doses were 0.9–59.5 μSv/Gy and 73.9–5006.1 μSv/Gy for Piso and Pwall, respectively. The neutron dose delivered to the patient was reduced to the level of the dose delivered with a concrete barrier by including a 10-cm-thick BPE for each beam.ConclusionsWhen the primary barrier shielding is designed with a metal sheet inside for high energy, proper neutron shielding should be constructed to avoid undesirable photoneutron dose.  相似文献   

15.
PurposeIt was given that the characteristics of the fluence distribution and the energy spectrum structure of 4MV photons on the Phase Space (PhSp) plane and a method to analyzing the characteristics.MethodsAfter the PhSp file of 4 MV photons was acquired by the method of Monte Carlo (MC) calculation, the photons recorded by PhSp file were grouped based on the energy bin, and it was analyzed that the spatial distribution and energy spectrum structure of the photons. The photons in each energy group were continually grouped to sub-files according to momentum bin, and the primary and scattered photons could be separated according to the character of the fluence distribution of the photons in the sub-files.ResultsThe energy of 4 MV beam is a continuous spectrum. The energy constituent on a pixel at different distances from the center point is different, and the average energy on the center axis of the field is the highest; The photons with 0–1.0 MeV had 42.6% of all; that with energy more than 3.0 MeV had 11.7%; greater than 4 MeV, just 1.5%. The primary and scattered photons were easy collected according to the distribution characteristics of sub-groups.ConclusionsThe work to acquire and analyze the PhSp file of the 4 MV beam is significant. 4 MV, 6 MV, 8 MV, 10 MV and 15 MV energy beams basically cover the beams of radiotherapy, and a database of the energy beams could be built for the MC related research of other scholars.  相似文献   

16.
17.
PurposeThis study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy.MethodsUsing Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements.ResultsFollowing the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties.ConclusionAnalytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs.  相似文献   

18.

Aim

The aim of this study is to calculate neutron contamination at the presence of circular cones irradiating by 18 MV photons using Monte Carlo code.

Background

Small photon fields are one of the most useful methods in radiotherapy. One of the techniques for shaping small photon beams is applying circular cones made of lead. Using this method in high energy photon due to neutron contamination is a crucial issue.

Materials and methods

Initially, Varian linac producing 18 MV photons was simulated and after validating the code, various circular cones were also simulated. Then, the number of neutrons, neutron equivalent dose and absorbed dose per Gy of photon dose were calculated along the central axis.

Results

Number of neutrons per Gy of photon dose had their maximum value at depth of 2 cm and these values for 5, 10, 15, 20 and 30 mm circular cones were 9.02, 7.76, 7.61, 6.02 and 5.08 (n cm?2 Gy?1), respectively. Neutron equivalent doses per Gy of photon dose had their maximum at the surface of the phantom and these values for mentioned collimators were 1.48, 1.33, 1.31, 1.12 and 1.08 (mSv Gy?1), respectively. Neutron absorbed doses had their maximum at the surface of the phantom and these values for mentioned collimators sizes were 103.74, 99.71, 95.77, 81.46 and 78.20 (μGy/Gy), respectively.

Conclusions

As the field size gets smaller, number of neutrons, equivalent and absorbed dose per Gy of photon increase. Also, neutron equivalent dose and absorbed dose are maximum at the surface of phantom and then these values will be decreased.  相似文献   

19.
MethodsGerminated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography.ConclusionsThe results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system.  相似文献   

20.
PurposeThis study aims to investigate the relationship between backscatter factors and Al-half-value-layers (Al-HVL) by making the quality index (QI) a parameter for diagnostic kilovoltage x-ray beams.MethodsBackscatter factors, Bw, for x-ray fluence spectra were calculated from the weighted average of Bw for monoenergetic photons of between 8 and 140 keV with field sizes of 10 cm × 10 cm to 40 cm × 40 cm. The value of Bw for monoenergetic photons was calculated from the ratio of the water kerma at the surface of a water phantom and that at the same point free-in-air using the EGSnrc/cavity code. The weighted averaged backscatter factors were validated by comparing them with those of direct Monte Carlo calculations for the x-ray fluence spectra. The Bw for the x-ray fluence spectra were classified by a QI of 0.35, 0.4, 0.5, 0.6, and 0.7 specified by the ratio of the effective energy and maximum energy. The relationship between Bw and Al-HVL was evaluated for the given QI values. The x-ray fluence spectra were generated for tube voltages of 40–140 kVp with Al-HVLs of 0.5–13.2 mm using the SpekCalc program.ResultsThe weighted averaged backscatter factors for x-ray fluence spectra agreed within 0.7% with those of the direct Monte Carlo calculations. The backscatter factors were represented by the fitting curves of R2 > 0.99 with Al-HVL for the given QI values.ConclusionsIt is possible to obtain Bw more accurately by using QI specified by the measured Al-HVL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号