共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mohamadreza Baghaban Eslaminejad Elham Malakooty Poor 《World journal of stem cells》2014,6(3):344-354
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review. 相似文献
3.
4.
Ying Liu Meng Li Zhanhai Yin Shuangli Zhou Yusheng Qiu 《Cell biology international》2020,44(2):560-568
Articular cartilage damage can lead to joint deformity, pain, and severe dysfunction. However, due to the lack of blood vessels and nerves in articular cartilage, the self‐healing capacity of damaged cartilage is limited. In this study, we overexpressed small ubiquitin‐like modifier (SUMO)1, SUMO2/3, and SUMO1/2/3 in bone marrow mesenchymal stem cells (BMSCs). Then, these cells were inoculated on surfaces of different hardness, and their differentiation into chondrocytes, hypoxic tolerance ability, and inflammatory response was detected. Finally, BMSCs were transplanted into the injured knee joint cavity of the rats, and the repair was evaluated. We found that BMSCs overexpressing SUMO1 were more likely to differentiate into articular cartilage along with the hardness of the surface, while BMSCs overexpressing SUMO2/3 could reduce inflammation response and improve the damaged cartilage microenvironment. In the rat model, BMSCs overexpressing SUMO1/2/3 transplanted on injured articular cartilage surface showed better survival, less inflammatory response, and improved tissue repair capability. In conclusion, BMSCs overexpressing SUMO are more tolerant to hypoxia conditions, and have stronger repair ability for damaged chondrocytes in vitro and for articular cartilage injury model in rats, and are excellent seed cells for repairing articular cartilage. 相似文献
5.
6.
7.
Masahiro Iwamoto Yoichi Ohta Colleen Larmour Motomi Enomoto‐Iwamoto 《Birth defects research. Part C, Embryo today : reviews》2013,99(3):192-202
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra‐articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. Birth Defects Research (Part C) 99:192–202, 2013 . © 2013 Wiley Periodicals, Inc . 相似文献
8.
Venkata Ramesh Dasari Krishna Kumar Veeravalli Dzung H Dinh 《World journal of stem cells》2014,6(2):120-133
With technological advances in basic research,the intricate mechanism of secondary delayed spinal cord injury(SCI)continues to unravel at a rapid pace.However,despite our deeper understanding of the molecular changes occurring after initial insult to the spinal cord,the cure for paralysis remains elusive.Current treatment of SCI is limited to early administration of high dose steroids to mitigate the harmful effect of cord edema that occurs after SCI and to reduce the cascade of secondary delayed SCI.R ecent evident-based clinical studies have cast doubt on the clinical benefit of steroids in SCI and intense focus on stem cell-based therapy has yielded some encouraging results.An array of mesenchymal stem cells(MSCs)from various sources with novel and promising strategies are being developed to improve function after SCI.In this review,we briefly discuss the pathophysiology of spinal cord injuries and characteristics and the potential sources of MSCs that can be used in the treatment of SCI.We will discuss the progress of MSCs application in research,focusing on the neuroprotective properties of MSCs.Finally,we will discuss the results from preclinical and clinical trials involving stem cell-based therapy in SCI. 相似文献
9.
10.
Akaitz Dorronsoro Fernando E. Santiago Diego Grassi Tianpeng Zhang Ruenn Chai Lai Sara J. McGowan Luise Angelini Mitra Lavasani Lana Corbo Aiping Lu Robert W. Brooks Marta GarciaContreras Donna B. Stolz Antonio Amelio Siddaraju V. Boregowda Mohammad Fallahi Adrian Reich Camillo Ricordi Donald G. Phinney Johnny Huard Sai Kiang Lim Laura J. Niedernhofer Paul D. Robbins 《Aging cell》2021,20(4)
Aging drives progressive loss of the ability of tissues to recover from stress, partly through loss of somatic stem cell function and increased senescent burden. We demonstrate that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) rapidly senescence and become dysfunctional in culture. Injection of BM‐MSCs from young mice prolonged life span and health span, and conditioned media (CM) from young BM‐MSCs rescued the function of aged stem cells and senescent fibroblasts. Extracellular vesicles (EVs) from young BM‐MSC CM extended life span of Ercc1 −/− mice similarly to injection of young BM‐MSCs. Finally, treatment with EVs from MSCs generated from human ES cells reduced senescence in culture and in vivo, and improved health span. Thus, MSC EVs represent an effective and safe approach for conferring the therapeutic effects of adult stem cells, avoiding the risks of tumor development and donor cell rejection. These results demonstrate that MSC‐derived EVs are highly effective senotherapeutics, slowing the progression of aging, and diseases driven by cellular senescence. 相似文献
11.
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long‐term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC‐derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs. 相似文献
12.
Li W Ren G Huang Y Su J Han Y Li J Chen X Cao K Chen Q Shou P Zhang L Yuan ZR Roberts AI Shi S Le AD Shi Y 《Cell death and differentiation》2012,19(9):1505-1513
Mesenchymal stem cells (MSCs) have been employed successfully to treat various immune disorders in animal models and clinical settings. Our previous studies have shown that MSCs can become highly immunosuppressive upon stimulation by inflammatory cytokines, an effect exerted through the concerted action of chemokines and nitric oxide (NO). Here, we show that MSCs can also enhance immune responses. This immune-promoting effect occurred when proinflammatory cytokines were inadequate to elicit sufficient NO production. When inducible nitric oxide synthase (iNOS) production was inhibited or genetically ablated, MSCs strongly enhance T-cell proliferation in vitro and the delayed-type hypersensitivity response in vivo. Furthermore, iNOS(-/-) MSCs significantly inhibited melanoma growth. It is likely that in the absence of NO, chemokines act to promote immune responses. Indeed, in CCR5(-/-)CXCR3(-/-) mice, the immune-promoting effect of iNOS(-/-) MSCs is greatly diminished. Thus, NO acts as a switch in MSC-mediated immunomodulation. More importantly, the dual effect on immune reactions was also observed in human MSCs, in which indoleamine 2,3-dioxygenase (IDO) acts as a switch. This study provides novel information about the pathophysiological roles of MSCs. 相似文献
13.
14.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro. 相似文献
15.
Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote sternness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer ceils, as well as the potential of MSCs for cancer therapy. 相似文献
16.
Mesenchymal stem cell therapy: A promising cell‐based therapy for treatment of myocardial infarction 下载免费PDF全文
Ayman El‐Sayed Shafei Mahmoud Ahmed Ali Hazem G. Ghanem Ahmed I. Shehata Ahmed A. Abdelgawad Hossam R. Handal Kareem A. Talaat Ahmed E. Ashaal Amal S. El‐Shal 《The journal of gene medicine》2017,19(12)
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI. 相似文献
17.
18.
Samaneh Shojaei Seyed Mahmoud Hashemi Hossein Ghanbarian Mohammad Salehi Samira Mohammadi-Yeganeh 《Journal of cellular physiology》2019,234(4):3394-3409
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME. 相似文献
19.
Human placenta-derived stem cells (hPDSCs) were isolated by trypsinization and further induced into cartilage cells in vitro. The engineered cartilage was constructed by combining hPDSCs with collagen sponge and the cartilage formation was observed
by implantation into nude mice. Results showed that hPDSCs featured mesenchymal stem cells and maintained proliferation in vitro for over 30 passages while remaining undifferentiated. All results indicated that hPDSCs have the potential to differentiate
into functional cartilage cells in vitro when combined with collagen sponge, which provided experimental evidence for prospective clinical application. 相似文献