首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
AimTo study of 2 Dimensional ion chamber array for angular response and its utility for quality assurance of dynamic multileaf collimator and pretreatment intensity modulated radiotherapy plans.Materials and MethodsThe MLC QA test patterns and IMRT plans were executed on 2D ion chamber array having 1020 vented pixel ionization chambers. The dynamic MLC QA test patterns were chair test, x–wedge, pyramid, open swipe field, garden fence and picket fence. Performance of Dynamic wedges was compared with physical wedges. For IMRT verification, five patients with localized prostate carcinoma were planned using dynamic IMRT technique. Angular response of MatriXX was measured by exposing the system from different gantry angles.ResultsDynamic MLC QA tests such as chair, x-wedge, pyramid, and open swipe field were successfully verified. MatriXX was not able to recognize the bar pattern of picket test and garden fence test. The response of MatriXX gradually decreases from 0° to 180° angles and it was 7.7% less at 180° angle. The dynamic wedge profiles were matching with corresponding physical wedge profiles. For pretreatment IMRT QA, the average dose difference between planned and measured dose was 1.26% with standard deviation of 1.06.ConclusionI'mRT MatriXX can be used for routine dynamic MLC and IMRT pretreatment QA but care should be taken while taking measurements in penumbra region because of its limited spatial resolution.  相似文献   

2.
PurposeTo evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions.Materials and methodsThe IQM’s ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1–5°) and in MLC-defined field size and field shift (1–5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated.ResultsThe IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets.Conclusion The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.  相似文献   

3.
BackgroundThere is limited data on error detectability for step-and-shoot intensity modulated radiotherapy (sIMRT) plans, despite significant work on dynamic methods. However, sIMRT treatments have an ongoing role in clinical practice. This study aimed to evaluate variations in the sensitivity of three patient-specific quality assurance (QA) devices to systematic delivery errors in sIMRT plans.Materials and methodsFour clinical sIMRT plans (prostate and head and neck) were edited to introduce errors in: Multi-Leaf Collimator (MLC) position (increasing field size, leaf pairs offset (1–3 mm) in opposite directions; and field shift, all leaves offset (1–3 mm) in one direction); collimator rotation (1–3 degrees) and gantry rotation (0.5–2 degrees). The total dose for each plan was measured using an ArcCHECK diode array. Each field, excluding those with gantry offsets, was also measured using an Electronic Portal Imager and a MatriXX Evolution 2D ionisation chamber array. 132 plans (858 fields) were delivered, producing 572 measured dose distributions. Measured doses were compared to calculated doses for the no-error plan using Gamma analysis with 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria (1716 analyses).ResultsGenerally, pass rates decreased with increasing errors and/or stricter gamma criteria. Pass rate variations with detector and plan type were also observed. For a 3%/3 mm gamma criteria, none of the devices could reliably detect 1 mm MLC position errors or 1 degree collimator rotation errors.ConclusionsThis work has highlighted the need to adapt QA based on treatment plan type and the need for detector specific assessment criteria to detect clinically significant errors.  相似文献   

4.
PurposeThe quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements.MethodsMatriXX is a commercial detector composed of 32 × 32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44 MeV proton and a 221.45 MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia – Italy, and the results were analyzed and compared.ResultsThe sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230 μm for carbon ions and less than 100 μm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement.ConclusionsThe results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.  相似文献   

5.
BackgroundThe usage of advanced radiotherapy techniques requires validation of a previously calculated dose with the precise delivery with a linear accelerator. This study aimed to review and evaluate new verification methods of dose distribution. Moreover, our purpose was to define an internal protocol of acceptance for in-vivo measurements of dose distribution.Materials and methodsThis study included 43 treatment plans of prostate cancer calculated using the Monte Carlo algorithm. All plans were delivered using the Volumetric Modulated Arc Therapy (VMAT) technique of advanced radiotherapy by the linear accelerator Elekta VersaHD. The dose distribution was verified using: MatriXX, iViewDose, and in-vivo measurements. The verification also included recalculation of fluence maps of quality assurance plans in another independent algorithm.ResultsThe acceptance criterion of 95% points of dose in agreement was found for pre-treatment verification using MatriXX; the average γ value was 99.09 ± 0.93 (SD) and 99.64 ± 0.35 (SD) for recalculation in the Collapse Cone algorithm. Moreover, using the second algorithm in the verification process showed a positive correlation ρ = 0.58, p < 0.001. However, verification using iViewDose in a phantom and in-vivo did not meet this γ-pass rate.ConclusionsEvaluation of gamma values for in-vivo measurements utilizing iViewDose software was helpful to establish an internal dosimetry protocol for prostate cancer treatments. We assumed value at a minimum of 50% points of the dose in agreement with the 3%/3 mm criterion as an acceptable compliance level. The recalculated dose distribution of QA plans in regard to the Collapse Cone algorithm in the other treatment planning system can be used as a pre-treatment verification method used by a medical physicist in their daily work. The effectiveness of use in iViewDose software, as a pre-treatment tool, is still debatable, unlike the MatriXX device.  相似文献   

6.
PurposeThe accuracy of gated irradiation may decrease when treatment is performed with short “beam-on” times. Also, the dose is subject to variation between treatment sessions if the respiratory rate is irregular. We therefore evaluated the impact of the differences between gated and non-gated treatment on doses using a new online quality assurance (QA) system for respiratory-gated radiotherapy.MethodsWe generated dose estimation models to associate dose and pulse information using a 0.6 cc Farmer chamber and our QA system. During gated irradiation with each of seven regular and irregular respiratory patterns, with the Farmer chamber readings as references, we evaluated our QA system’s accuracy. We then used the QA system to assess the impact of respiratory patterns on dose distribution for three lung and three liver radiotherapy plans. Gated and non-gated plans were generated and compared.ResultsThere was agreement within 1.7% between the ionization chamber and our system for several regular and irregular motion patterns. For dose distributions with measured errors, there were larger differences between gated and non-gated treatment for high-dose regions within the planned treatment volume (PTV). Compared with a non-gated plan, PTV D95% for a gated plan decreased by −1.5% to −2.6%. Doses to organs at risk were similar with both plans.ConclusionsOur simple system estimated the radiation dose to the patient using only pulse information from the linac, even during irregular respiration. The quality of gated irradiation for each patient can be verified fraction by fraction.  相似文献   

7.
PurposeThe aim of this paper is to characterize two different EPID-based solutions for pre-treatment VMAT quality assurance, the 2D portal dosimetry and the 3D projection technique. Their ability to catch the main critical delivery errors was studied.MethodsMeasurements were performed with a linac accelerator equipped with EPID aSi1000, Portal Dose Image Prediction (PDIP), and PerFRACTION softwares. Their performances were studied simulating perturbations of a reference plan through systematic variations in dose values and micromultileaf collimator position. The performance of PDIP, based on 2D forward method, was evaluated calculating gamma passing rate (%GP) between no-error and error-simulated measurements. The impact of errors with PerFRACTION, based on 3D projection technique, was analyzed by calculating the difference between reference and perturbed DVH (%ΔD). Subsequently pre-treatment verification with PerFRACTION was done for 27 patients of different pathologies.ResultsThe sensitivity of PerFRACTION was slightly higher than sensitivity of PDIP, reaching a maximum of 0.9. Specificity was 1 for PerFRACTION and 0.6 for PDIP. The analysis of patients’ DVHs indicated that the mean %ΔD was (1.2 ± 1.9)% for D2%, (0.6 ± 1.7)% for D95% and (−0.0 ± 1.2)% for Dmean of PTV. Regarding OARs, we observed important discrepancies on DVH but that the higher dose variations were in low dose area (<10 Gy).ConclusionsThis study supports the introduction of the new 3D forward projection method for pretreatment QA raising the claim that the visualization of the delivered dose distribution on patient anatomy has major advantages over traditional portal dosimetry QA systems.  相似文献   

8.
PurposeThis work investigated effects of implementing the Delta4 Discover diode transmission detector into the clinical workflow.MethodsPDD and profile scans were completed with and without the Discover for a number of photon beam energies. Transmission factors were determined for all beam energies and included in Eclipse TPS to account for the attenuation of the Discover. A variety of IMRT plans were delivered to a Delta4 Phantom+ with and without the Discover to evaluate the Discover’s effects on IMRT QA. An imaging QA phantom was used to assess the detector’s effects on MV image quality. OSLDs placed on the Phantom+ were used to determine the detector’s effects on superficial dose.ResultsThe largest effect on PDDs after dmax was 0.5%. The largest change in beam profile symmetry and flatness was 0.2% and 0.1%, respectively. An average difference in gamma passing rates (2%/2 mm) of 0.2% was observed between plans that did not include the Discover in the measurement and calculation to plans that did include the Discover in the measurement and calculation. The Discover did not significantly change the MV image quality, and the largest observed increase in the relative superficial dose when the Discover was present was 1%.ConclusionsThe effects the Discover has on the linac beam were found to be minimal. The device can be implemented into the clinic without the need to alter the TPS beam modeling, other than accounting for the device’s attenuation. However, a careful workflow review to implement the Discover should be completed.  相似文献   

9.
PurposeTo evaluate EBT3 for pre-treatment patient specific quality assurance (QA). The method we propose combines the experience gained in our center with the guidelines of the protocol proposed by Lewis et al. in 2012. To compare the multichannel approach with the single channel dosimetry.MethodsGafchromic® EBT3 films were irradiated both at linac and TomoTherapy and calibration curves were obtained. A series of irradiations with simple fields (uniform dose distributions on regular shaped targets) was performed. In a second stage, films were exposed to full clinical plans at linac (step and shoot IMRT and VMAT). At TomoTherapy dose maps were obtained for a clinical plan in three different coronal planes. Films were digitized using an Epson 10000XL scanner and FilmQA™ Pro software was employed for the analysis.ResultsThe measured calibration curves suggest that, at least for the two beams taken into account (6 MV linac and TomoTherapy), a single calibration can be successfully adopted for each film lot. The application of the multichannel optimization method strongly improves the results in terms of gamma passing rates of the comparison between measured and calculated maps.ConclusionsUp to now EBT films, although attractive, were not preferred for routine patient specific QA due to their complex and time consuming processing and to the challenging work of characterization. The application of the mentioned protocol, together with some additional precautions, and the adoption of the multichannel optimization dosimetry, make this detector a handy and reliable tool for patient specific QA.  相似文献   

10.
PurposeThe aim of this study was to develop an end-to-end postal audit test to examine the coincidence between the imaging isocenter and treatment beam isocenter of the image guided radiotherapy (IGRT) linac system for Japan Clinical Oncology Group (JCOG) trials, as a part of IGRT credentialing of institutions participating in JCOG trials.MethodsWe developed an end-to-end postal audit test to verify radiation positional errors associated with IGRT techniques. This test is intended for simulating a clinical IGRT flow and uses a static cubic phantom measuring 15 × 15 × 15 cm3 and weighing approximately 3.4 kg. The phantom has four gold fiducial markers and a spherical dummy target for setup, with known shift values from the phantom center. Two pairs of Gafchromic RTQA2 films were inserted 5 mm from the phantom’s anterior-posterior and right-left surfaces. Radiation positional errors at the isocenter were determined by analyzing the center of the radiation field on the films and the known shift values of the dummy target. The test was performed on 47 IGRT devices at 35 institutions.ResultsRadiation positional errors were within acceptance levels (1 mm/1°) for 42 IGRT devices (89.4%) in the first check. Median time to complete IGRT credentialing was 11.5 days. This audit method was applicable for any radiotherapy machine with an IGRT device.ConclusionsA postal audit test to verify radiation positional errors for JCOG trials was successfully developed. In the postal audit, all but one institution passed this credentialing item within two trials.  相似文献   

11.
BackgroundThe availability of linear accelerators (linac) for research purposes is often limited and therefore alternative radiation sources are needed to conduct radiobiological research. The National Centre for Radiation Research in Poland recently developed an intraoperative mobile linac that enables electron irradiation at energies ranging from 4 to 12 MeV and dose rates of 5 or 10 Gy/min. The present study was conducted to evaluate the electron beam parameters of this intraoperative linac and to verify the set-up to evaluate out-of-field doses in a water phantom, which were determined through dosimetric and biological response measurements.Materials and methodsThe distribution of radiation doses along and across the radiation beam were measured in a water phantom using a semiconductor detector and absolute doses using an ionisation chamber. Two luminal breast cancer cell lines (T-47D and HER2 positive SK-BR-3) were placed in the phantom to study radiation response at doses ranging from 2 to 10 Gy. Cell response was measured by clonogenic assays.Results and ConclusionThe electron beam properties, including depth doses and profiles, were within expected range for the stated energies. These results confirm the viability of this device and set-up as a source of megavoltage electrons to evaluate the radiobiological response of tumour cells.  相似文献   

12.
PurposeIORT with mobile linear accelerators is a well-established modality where the dose rate and, therefore, the dose per pulse are very high. The constancy of the dosimetric parameters of the accelerator has to be checked daily. The aim of this work is to develop a phantom with embedded detectors to improve both accuracy and efficiency in the daily test of an IORT linac at the surgery room.MethodsThe developed phantom is manufactured with transparent polymethyl methacrylate (PMMA), allocating 6 parallel-plate chambers: a central one to evaluate the on-axis beam output, another on-axis one placed at a fixed depth under the previous one to evaluate the energy constancy and four off-axis chambers to evaluate the flatness and symmetry. To analyse the readings a specific application has been developed.ResultsFor all chambers and energies, the mean saturation and polarization corrections were smaller than 0.7%. The beam is monitored at different levels of the clinical beam. Output, energy constancy and flatness correlate very well with the correspondent values with the complete applicator. During the first six months of clinical use the beam dosimetric parameters showed excellent stability.ConclusionsA phantom has been developed with embedded parallel plate chambers attached to the upper applicator part of an IORT linac. The phantom allows a very efficient setup reducing the time to check the parameters. It provides complete dosimetric information (output, energy and flatness) with just one shot and using ionization chambers with minimum saturation effect, as this highly pulsed beam requires.  相似文献   

13.
PurposeTo compare detectors for dosimetric verification before VMAT treatments and evaluate their sensitivity to errors.Methods and materialsMeasurements using three detectors (ArcCheck, 2d array 729 and EPID) were used to validate the dosimetric accuracy of the VMAT delivery. Firstly, performance of the three devices was studied. Secondly, to assess the reliability of the detectors, 59 VMAT treatment plans from a variety of clinical sites were considered. Thirdly, systematic variations in collimator, couch and gantry angle plus MLC positioning were applied to four clinical treatments (two prostate, two head and neck cases) in order to establish the detection sensitivity of the three devices. Measurements were compared with TPS computed doses via gamma analysis (3%/3 mm and 2%/2 mm) with an agreement of at least 95% and 90% respectively in all pixels. Effect of the errors on the dose distributions was analyzed.ResultsRepeatability and reproducibility were excellent for the three devices. The average pass rate for the 59 cases was superior to 98% for all devices with 3%/3 mm criteria. It was found that for the plans delivered with errors, the sensitivity was quite similar for all devices. Devices were able to detect a 2 mm opened or closed MLC error with 3%/3 mm tolerance level. An error of 3° in collimator, gantry or couch rotation was detected by the three devices using 2%/2 mm criteria.ConclusionsAll three devices have the potential to detect errors with more or less the same threshold. Nevertheless, there is no guarantee that pretreatment QA will catch delivery errors.  相似文献   

14.
PurposeThis study retrospectively reviewed locally set pass rates/tolerances for COMPASS® pre-treatment quality assurance results for RapidArc prostate plans to determine if these are appropriate. This was performed via quantifying the agreement between treatment planning system calculations and measurements based on absolute dose comparisons (3% tolerance for all dose points) and global gamma index assessment (3%/3 mm criterion for 97% of points).MethodSeventy-three prostate one-arc RapidArc plans, delivered by four dosimetrically matched linacs, were measured using the MatriXX Evolution two-dimensional array and analysed using COMPASS® (v.3, IBA Dosimetry). For the planning target volumes (PTV) considered, the D99%, D50%, D1% and DMean differences were analysed. The percentage volume with gamma greater than 1, average gamma and DMean difference were investigated for all structures. Nine plans were also assessed across the linac fleet to investigate potential linac dependence of results.Results and ConclusionsRegarding PTV DMean differences, all plans fell within the 3% tolerance and mostly within 2%, although there was a relatively small systematic difference. The absolute percentage differences of average and median doses suggested a weak linac dependence of the results which was found to be clinically insignificant. New stricter tolerances were established both for dose comparisons and gamma evaluation. Correlation between the gamma pass rates and the differences in the D99%, D50% and D1% was found to be moderate suggesting that gamma analysis in isolation has questionable clinical meaning and should only be used to indicate outliers for further analysis.  相似文献   

15.
AimThe aim of this study is to commission and validate Dolphin-Compass dosimetry as a patient-specific Quality Assurance (QA) device.BackgroundThe advancement of radiation therapy in terms of highly conformal delivery techniques demands a novel method of patient-specific QA. Dolphin-Compass system is a dosimetry solution capable of doing different QA in radiation therapy.Materials and methodsDolphin, air-vented ionization detector array mounted on Versa-HD Linear Accelerator (LINAC) was used for measurements. The Compass is a dose computation algorithm which requires modelling of LINAC head similar to other Treatment Planning Systems (TPS). The dosimetry system was commissioned after measuring the required beam data. The validation was performed by comparison of treatment plans generated in Monaco TPS against the measurement data. Different types of simple, complex, static and dynamic radiation fields and highly conformal treatment plans of patients were used in this study.ResultsFor all field sizes, point doses obtained from Dolphin-Compass dosimetry were in good agreement with the corresponding TPS calculated values in most of the regions, except the penumbra, outside field and at build-up depth. The results of gamma passing rates of measurements by using different Multi-leaf Collimator patterns and Intensity Modulated Radiation Therapy fluence were also found to be in good correlation with the corresponding TPS values.ConclusionsThe commissioning and validation of dosimetry was performed with the help of various fields, MLC patterns and complex treatment plans. The present study also evaluated the efficiency of the 3D dosimetry system for the QA of complex treatment plans.  相似文献   

16.
The purpose of this study was to evaluate the suitability of the Daily QA 3 (Sun Nuclear Corporation, Melbourne, USA) device as a safe quality assurance device for control of machine specific parameters, such as linear accelerator output, beam quality and beam flatness and symmetry. Measurements were performed using three Varian 2300iX linear accelerators. The suitability of Daily QA 3 as a device for quality control of linear accelerator parameters was investigated for both 6 and 10 MV photons and 6, 9, 12, 15 and 18 MeV electrons. Measurements of machine specific using the Daily QA 3 device were compared to corresponding measurements using a simpler constancy meter, Farmer chamber and plane parallel ionisation chamber in a water tank. The Daily QA 3 device showed a linear dose response making it a suitable device for detection of output variations during routine measurements. It was noted that over estimations of variations compared with Farmer chamber readings were seen if the Daily QA 3 wasn’t calibrated for output and sensitivity on a regular eight to ten monthly basis. Temperature-pressure correction factors calculated by Daily QA 3 also contributed towards larger short term variations seen in output measurements. Energy, symmetry and flatness variations detected by Daily QA 3 were consistent with measurements performed in water tank using a parallel plate chamber. It was concluded that the Daily QA 3 device is suitable for routine daily and fortnightly quality assurance of linear accelerator beam parameters however a regular eight-ten monthly dose and detector array calibration will improve error detection capabilities of the device.  相似文献   

17.
PurposeWe developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker.MethodsThe recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations.ResultsThe root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker.ConclusionsSufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.  相似文献   

18.
Background/AimIn many facilities, intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT) use intensity-modulated beams, formed by a multi-leaf collimator (MLC). In IMRT and VMAT, MLC and linear accelerator errors (both geometric and dose), can significantly affect the doses administered to patients. Therefore, IMRT and VMAT treatment plans must include the use of patient-specific quality assurance (QA) before treatment to confirm dose accuracy.Materials and methodsIn this study, we compared and analyzed the results of dose verification using a multi-dimensional dose verification system Delta4 PT, an ionization chamber dosimeter, and gafchromic film, using data from 52 patients undergoing head and neck VMAT as the test material.ResultBased on the results of the absolute dose verification for the ionization chamber dosimeter and Delta4 PT, taking an axial view, the upper limit of the 95% confidence interval was 3.13%, and the lower limit was −3.67%, indicating good agreement. These results mean that as long as absolute dose verification for the axial view does not deviate from this range, Delta4 PT can be used as an alternative to an ionization chamber dosimeter for absolute dose verification. When we then reviewed dose distribution verification, the pass rate for Delta4 PT was acceptable, and was less varied than that of gafchromic film.ConclusionThis results in that provided the pass rate result for Delta4 PT does not fall below 96%, it can be used as a substitute for gafchromic film in dose distribution verification. These results indicate that patient-specific QA could be simplified.  相似文献   

19.
PurposeDynamic delivery of intensity modulated beams (dIMRT) requires not only accurate verification of leaf positioning but also a control on the speed of motion. The latter is a parameter that has a major impact on the dose delivered to the patient. Time consumed in quality assurance (QA) procedures is an issue of relevance in any radiotherapy department. Electronic portal imaging dosimetry (EPID) can be very efficient for routine tests. The purpose of this work is to investigate the ability of our EPID for detecting small errors in leaf positioning, and to present our daily QA procedures for dIMRT based on EPID.Methods and materialsA Varian 2100 CD Clinac equipped with an 80 leaf Millennium MLC and with amorphous silicon based EPID (aS500, Varian) is used. The daily QA program consists in performing: Stability check of the EPID signal, Garden fence test, Sweeping slit test, and Leaf speed test.Results and discussionThe EPID system exhibits good long term reproducibility. The mean portal dose at the centre of a 10 × 10 cm2 static field was 1.002 ± 0.004 (range 1.013–0.995) for the period evaluated of 47 weeks. Garden fence test shows that leaf position errors of up to 0.2 mm can be detected. With the Sweeping slit test we are able to detect small deviations on the gap width and errors of individual leaves of 0.5 and 0.2 mm. With the Leaf speed test problems due to motor fatigue or friction between leaves can be detected.ConclusionsThis set of tests takes no longer than 5 min in the linac treatment room. With EPID dosimetry, a consistent daily QA program can be applied, giving complete information about positioning/speed MLC.  相似文献   

20.
PurposeTo evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements.Materials & MethodThe QA device, named Sphinx Compact, is composed of a 20x20 cm2 flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated. Daily PBS QA tests of X-ray/proton isocenter coincidence, the constancy of proton spot position and sigma as well as the energy of pristine proton beam, and the flatness of SOBP proton beam through the 'transformed' profile were performed and analyzed. Furthermore, the sensitivity of detecting energy changes of pristine proton beam was also evaluated.ResultsThe quenching effect was observed at depths near the pristine peak regions. The flat-panel measured range of the distal 80% is within 0.9 mm to the defined ranges of the delivered proton beams. X-ray/proton isocenter coincidence tests demonstrated maximum mismatch of 0.3 mm between the two isocenters. The device can detect 0.1 mm change of spot position and 0.1 MeV energy changes of pristine proton beams. The measured transformed SOBP beam profile through the wedge module rendered as flat.ConclusionsEven though the flat-panel detector exhibited quenching effect at the Bragg peak region, the proton range can still be accurately measured. The device can fulfill the requirements of the daily QA tests recommended by the AAPM TG224 Report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号