首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two‐dimensional (2D) nanomaterials (i.e., graphene and its derivatives, transition metal oxides and transition metal dichalcogenides) are receiving a lot attention in energy storage application because of their unprecedented properties and great diversities. However, their re‐stacking or aggregation during the electrode fabrication process has greatly hindered their further developments and applications in rechargeable lithium batteries. Recently, rationally designed hierarchical structures based on 2D nanomaterials have emerged as promising candidates in rechargeable lithium battery applications. Numerous synthetic strategies have been developed to obtain hierarchical structures and high‐performance energy storage devices based on these hierarchical structure have been realized. This review summarizes the synthesis and characteristics of three styles of hierarchical architecture, namely three‐dimensional (3D) porous network nanostructures, hollow nanostructures and self‐supported nanoarrays, presents the representative applications of hierarchical structured nanomaterials as functional materials for lithium ion batteries, lithium‐sulfur batteries and lithium‐oxygen batteries, meanwhile sheds light particularly on the relationship between structure engineering and improved electrochemical performance; and provides the existing challenges and the perspectives for this fast emerging field.  相似文献   

2.
Iron oxides, such as Fe2O3 and Fe3O4, have recently received increased attention as very promising anode materials for rechargeable lithium‐ion batteries (LIBs) because of their high theoretical capacity, non‐toxicity, low cost, and improved safety. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials. Here, recent research progress in the rational design and synthesis of diverse iron oxide‐based nanomaterials and their lithium storage performance for LIBs, including 1D nanowires/rods, 2D nanosheets/flakes, 3D porous/hierarchical architectures, various hollow structures, and hybrid nanostructures of iron oxides and carbon (including amorphous carbon, carbon nanotubes, and graphene). By focusing on synthesis strategies for various iron‐oxide‐based nanostructures and the impacts of nanostructuring on their electrochemical performance, novel approaches to the construction of iron‐oxide‐based nanostructures are highlighted and the importance of proper structural and compositional engineering that leads to improved physical/chemical properties of iron oxides for efficient electrochemical energy storage is stressed. Iron‐oxide‐based nanomaterials stand a good chance as negative electrodes for next generation LIBs.  相似文献   

3.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

4.
Benefiting from higher volumetric capacity, environmental friendliness and metallic dendrite‐free magnesium (Mg) anodes, rechargeable magnesium batteries (RMBs) are of great importance to the development of energy storage technology beyond lithium‐ion batteries (LIBs). However, their practical applications are still limited by the absence of suitable electrode materials, the sluggish kinetics of Mg2+ insertion/extraction and incompatibilities between electrodes and electrolytes. Herein, a systematic and insightful review of recent advances in RMBs, including intercalation‐based cathode materials and conversion reaction‐based compounds is presented. The relationship between microstructures with their electrochemical performances is comprehensively elucidated. In particular, anode materials are discussed beyond metallic Mg for RMBs. Furthermore, other Mg‐based battery systems are also summarized, including Mg–air batteries, Mg–sulfur batteries, and Mg–iodine batteries. This review provides a comprehensive understanding of Mg‐based energy storage technology and could offer new strategies for designing high‐performance rechargeable magnesium batteries.  相似文献   

5.
Positive electrodes such as LiFePO4 and LiMnPO4 nanomaterials with olivine structures are considered as most efficient cathode materials for application in lithium ion batteries. Recently, several methods have been proposed for the preparation of lithium metal phosphates as cathodes for lithium ion batteries and their electrochemical performances have been investigated. Over the last 20 years, several synthetic methods have been proposed for lithium metal phosphate nanomaterials. In this review, hydrothermal and solvothermal syntheses of LiFePO4 and LiMnPO4 nanomaterials at low and high temperatures are discussed, including microwave‐hydrothermal and microwave‐solvothermal methods. The effect of particle size and particle morphology on the electrochemical properties of LiFePO4 and LiMnPO4 cathode materials are also discussed. In addition, the recently emerged supercritical solvothermal and supercritical hydrothermal syntheses of LiFePO4 and LiMnPO4 nanomaterials and their electrochemical property also been addressed.  相似文献   

6.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

7.
Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N‐doped graphene–carbon nanotube hybrid materials through a simple one‐step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium–sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g?1 at 0.2 C rate), excellent rate capability (458 and 220 mA h g?1 at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g?1 at 5 and 10 C (1 C = 1673 mA g?1) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much‐improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N‐doped graphene–carbon nanotube hybrid materials for high performance lithium–sulfur batteries.  相似文献   

8.
Electrochemical energy storage is of extraordinary importance for fulfilling the utilization of renewable and sustainable energy sources. There is an increasing demand for energy storage devices with high energy and power densities, prolonged stability, safety, and low cost. In the past decade, numerous research efforts have been devoted to achieving these requirements, especially in the design of advanced electrode materials. Hollow carbon spheres (HCS) derived nanomaterials combining the advantages of 3D HCS and porous structures have been considered as alternative electrode materials for advanced energy storage applications, due to their unique features such as high surface‐to‐volume ratios, encapsulation capability, together with outstanding chemical and thermal stability. In this review, the authors first present a comprehensive overview of the synthetic strategies of HCS, and elucidate the design and synthesis of HCS‐derived nanomaterials including various types of HCS and their nanohybrids. Additionally, their significant roles as electrode materials for supercapacitors, lithium‐ion or sodium‐ion batteries, and sulfur hosts for lithium sulfur batteries are highlighted. Finally, current challenges in the synthesis of HCS and future directions in HCS‐derived nanomaterials for energy storage applications are proposed.  相似文献   

9.
Mixed metal sulfides (MMSs) have attracted increased attention as promising electrode materials for electrochemical energy storage and conversion systems including lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), hybrid supercapacitors (HSCs), metal–air batteries (MABs), and water splitting. Compared with monometal sulfides, MMSs exhibit greatly enhanced electrochemical performance, which is largely originated from their higher electronic conductivity and richer redox reactions. In this review, recent progresses in the rational design and synthesis of diverse MMS‐based micro/nanostructures with controlled morphologies, sizes, and compositions for LIBs, SIBs, HSCs, MABs, and water splitting are summarized. In particular, nanostructuring, synthesis of nanocomposites with carbonaceous materials and fabrication of 3D MMS‐based electrodes are demonstrated to be three effective approaches for improving the electrochemical performance of MMS‐based electrode materials. Furthermore, some potential challenges as well as prospects are discussed to further advance the development of MMS‐based electrode materials for next‐generation electrochemical energy storage and conversion systems.  相似文献   

10.
Pseudocapacitive materials have been highlighted as promising electrode materials to overcome slow diffusion‐limited redox mechanism in active materials, which impedes fast charging/discharging in energy storage devices. However, previously reported pseudocapacitive properties have been rarely used in lithium‐ion batteries (LIBs) and evaluation methods have been limited to those focused on thin‐film‐type electrodes. Hence, a nanocage‐shaped silicon–carbon composite anode is proposed with excellent pseudocapacitive qualities for LIB applications. This composite anode exhibits a superior rate capability compared to other Si‐based anodes, including commercial silicon nanoparticles, because of the higher pseudocapacitive contribution coming from ultrathin Si layer. Furthermore, unprecedent 3D pore design in cage shape, which prevents the particle scale expansion even after full lithiation demonstrates the high cycling stability. This concept can potentially be used to realize high‐power and high‐energy LIB anode materials.  相似文献   

11.
2D nanomaterials provide numerous fascinating properties, such as abundant active surfaces and open ion diffusion channels, which enable fast transport and storage of lithium ions and beyond. However, decreased active surfaces, prolonged ion transport pathway, and sluggish ion transport kinetics caused by self‐restacking of 2D nanomaterials during electrode assembly remain a major challenge to build high‐performance energy storage devices with simultaneously maximized energy and power density as well as long cycle life. To address the above challenge, porosity (or hole) engineering in 2D nanomaterials has become a promising strategy to enable porous 2D nanomaterials with synergetic features combining both 2D nanomaterials and porous architectures. Herein, recent important progress on porous/holey 2D nanomaterials for electrochemical energy storage is reviewed, starting with the introduction of synthetic strategies of porous/holey 2D nanomaterials, followed by critical discussion of design rule and their advantageous features. Thereafter, representative work on porous/holey 2D nanomaterials for electrochemical capacitors, lithium‐ion and sodium‐ion batteries, and other emerging battery technologies (lithium‐sulfur and metal‐air batteries) are presented. The article concludes with perspectives on the future directions for porous/holey 2D nanomaterial in energy storage and conversion applications.  相似文献   

12.
The applications of carbon and carbon‐based materials with high porosity, high surface area, and functionalities based on metal‐organic framework precursors and/or templates have attracted significant research interest in recent years, particularly in the field of batteries. The chemical and physical properties of carbon and carbon‐based materials obtained by the heat treatment of various metal‐organic framework precursors or templates are improved to a certain extent. In this comprehensive review, the synthetic methods and electrochemical performance of carbon materials derived from metal‐organic frameworks (metal/carbon, metal oxide/carbon, nitrogen‐doped carbon, porous carbon, etc.) along with their applications in batteries are outlined.  相似文献   

13.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

14.
There are growing concerns over the environmental, climate, and health impacts caused by using non‐renewable fossil fuels. The utilization of green energy, including solar and wind power, is believed to be one of the most promising alternatives to support more sustainable economic growth. In this regard, lithium‐ion batteries (LIBs) can play a critically important role. To further increase the energy and power densities of LIBs, silicon anodes have been intensively explored due to their high capacity, low operation potential, environmental friendliness, and high abundance. The main challenges for the practical implementation of silicon anodes, however, are the huge volume variation during lithiation and delithiation processes and the unstable solid‐electrolyte interphase (SEI) films. Recently, significant breakthroughs have been achieved utilizing advanced nanotechnologies in terms of increasing cycle life and enhancing charging rate performance due partially to the excellent mechanical properties of nanomaterials, high surface area, and fast lithium and electron transportation. Here, the most recent advance in the applications of 0D (nanoparticles), 1D (nanowires and nanotubes), and 2D (thin film) silicon nanomaterials in LIBs are summarized. The synthetic routes and electrochemical performance of these Si nanomaterials, and the underlying reaction mechanisms are systematically described.  相似文献   

15.
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.  相似文献   

16.
Covalent–organic frameworks (COFs), featuring structural diversity, framework tunability and functional versatility, have emerged as promising organic electrode materials for rechargeable batteries and garnered tremendous attention in recent years. The adjustable pore configuration, coupled with the functionalization of frameworks through pre‐ and post‐synthesis strategies, enables a precise customization of COFs, which provides a novel perspective to deepen the understanding of the fundamental problems of organic electrode materials. In this review, a summary of the recent research into COFs electrode materials for rechargeable batteries including lithium‐ion batteries, sodium‐ion batteries, potassium‐ion batteries, and aqueous zinc batteries is provided. In addition, this review will also cover the working principles, advantages and challenges, strategies to improve electrochemical performance, and applications of COFs in rechargeable batteries.  相似文献   

17.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

18.
In the past few years, insensitive attentions have been drawn to wearable and flexible energy storage devices/systems along with the emergence of wearable electronics. Much progress has been achieved in developing flexible electrochemical energy storage devices with high end‐use performance. However, challenges still remain in well balancing the electrochemical properties, mechanical properties, and the processing technologies. In this review, a specific perspective on the development of textile‐based electrochemical energy storage devices (TEESDs), in which textile components and technologies are utilized to enhance the energy storage ability and mechanical properties of wearable electronic devices, is provided. The discussion focuses on the material preparation and characteristics, electrode and device fabrication strategies, electrochemical performance and metrics, wearable compatibility, and fabrication scalability of TEESDs including textile‐based supercapacitors and lithium‐ion batteries.  相似文献   

19.
Even though tremendous achievement has been made experimentally in the performance of lithium–sulfur (Li–S) battery, theoretical studies in this area are lagging behind due to the complexity of the Li–S systems and the effects of solvent. For this purpose, a new methodology is developed for investigating the 2D hexaaminobenzene‐based coordination polymers (2D‐HAB‐CPs) as cathode candidate materials for Li–S batteries via density functional theory calculations in combination with an in‐house developed charge polarized solvent model and a genetic algorithm structure global search code. With high ratios of transition metal atoms and two‐coordinated nitrogen atoms, excellent electric conductivity, and structural porosity, the 2D‐HAB‐CP is able to address all of the three main challenges facing Li–S batteries: confining the lithium polysulfides from dissolution, facilitating the electron conductivity and buffering the volumetric expansion during the lithiation process. In addition, the theoretical energy density of this system is as high as 1395 Wh kg?1. These results demonstrate that the 2D‐HAB‐CP is a promising cathode material for Li–S batteries. The proposed computational framework not only opens a new avenue for understanding the key role played by solution and liquid electrolytes in Li–S batteries, but also can be generally applied to other processes with liquids involved.  相似文献   

20.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号