首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3′UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3′UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy

  相似文献   

9.
In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA microarray was applied to determine the genes that were regulated directly or indirectly by miR-183. 3′UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3′UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3′UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.  相似文献   

10.
11.
12.

Background

miR-18a is one of the most up-regulated miRNAs in colorectal cancers (CRC) based on miRNA profiling. In this study, we examined the functional significance of miR-18a in CRC.

Methods

Expression of miR-18a was investigated in 45 CRC patients. Potential target genes of miR-18a were predicted by in silico search and confirmed by luciferase activity assay and Western blot. DNA damage was measured by comet assay. Gene function was measured by cell viability, colony formation and apoptosis assays.

Results

The up-regulation of miR-18a was validated and confirmed in 45 primary CRC tumors compared with adjacent normal tissues (p<0.0001). Through in silico search, the 3′UTR of Ataxia telangiectasia mutated (ATM) contains a conserved miR-18a binding site. Expression of ATM was down-regulated in CRC tumors (p<0.0001) and inversely correlated with miR-18a expression (r = -0.4562, p<0.01). Over-expression of miR-18a in colon cancer cells significantly reduced the luciferase activity of the construct with wild-type ATM 3′UTR but not that with mutant ATM 3′UTR, inferring a direct interaction of miR-18a with ATM 3′UTR. This was further confirmed by the down-regulation of ATM protein by miR-18a. As ATM is a key enzyme in DNA damage repair, we evaluated the effect of miR-18a on DNA double-strand breaks. Ectopic expression of miR-18a significantly inhibited the repair of DNA damage induced by etoposide (p<0.001), leading to accumulation of DNA damage, increase in cell apoptosis and poor clonogenic survival.

Conclusion

miR-18a attenuates cellular repair of DNA double-strand breaks by directly suppressing ATM, a key enzyme in DNA damage repair.  相似文献   

13.
Krüppel-like factor 5 (KLF5) takes part in the pathologic processes of many types of cancer; however, its expression and roles in the biological behavior of gastric cancer remain unknown. TargetScan suggested that miR-145-5p is the predicted effective and conserved microRNA (miRNA) that binds to KLF5 through its 3′-untranslated region (UTR). We investigated the expression of KLF5 and miR-145-5p messenger RNA (mRNA) in gastric cancer and then analyzed its role in the biological behavior of gastric cancer cells. Our results indicated that KLF5 expression was detected by immunohistochemistry in 39.7% of the gastric cancer cases and was increased compared with that of the corresponding noncancerous normal mucosa (0.01 < p < 0.05). The poorly differentiated subtype showed positive KLF5 expression, whereas the differentiated subtype showed negative KLF5 expression (p < 0.05). Dual-luciferase reporter assay suggested KLF5 3′-UTR was the direct target of miR-145-5p. Compared with the differentiated gastric cancer, miR-145-5p was downregulated in undifferentiated gastric cancer (p < 0.05). The downregulation of KLF5 expression and differentiation of MGC-803 and BGC-823 caused by siKLF5 or miR-145-5p mimic transfection. Our results indicated that miR-145-5p/KLF5 3′-UTR affected the differentiation of gastric cancer. miR-145-5p was able to promote gastric cancer differentiation by targeting KLF5 3′-UTR directly. Our data suggest a novel mechanism for cancer differentiation and a new facet to the role of miR-145-5p/KLF5 in gastric cancer.  相似文献   

14.
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3′ untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5′ UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3′ UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.  相似文献   

15.
16.
MicroRNAs have been regarded to play a crucial role in the proliferation of different cell types including preadipocytes. In our study, we observed that miR-129-5p was down-regulated during 3T3-L1 preadipocyte proliferation, while the expression of G3BP1 showed a contrary tendency. 5-Ethynyl-2′-deoxyuridine (EdU) incorporation assay and flow cytometry showed that overexpression of miR-129-5p could bring about a reduction in S-phase cells and G2-phase arrest. Additional study indicated that miR-129-5p impaired cell cycle-related genes in 3T3-L1 preadipocytes. Importantly, it showed that miR-129-5p directly targeted the 3UTR of G3BP1 and the expression of G3BP1 was inhibited by miR-129-5p mimic. Moreover, miR-129-5p mimic activated the p38 signaling pathway through up-regulating p38 and the phosphorylation level of p38. In a word, results in our study revealed that miR-129-5p suppressed preadipocyte proliferation via targeting G3BP1 and activating the p38 signaling pathway.  相似文献   

17.
18.
《Autophagy》2013,9(3):468-479
Multiple genetic studies have implicated the autophagy-related gene, ATG16L1, in the pathogenesis of Crohn disease (CD). While CD-related research on ATG16L1 has focused on the functional significance of ATG16L1 genetic variations, the mechanisms underlying the regulation of ATG16L1 expression are unclear. Our laboratory has described that microRNAs (miRNAs), key regulators of gene expression, are dysregulated in CD. Here, we report miRNA-mediated regulation of ATG16L1 in colonic epithelial cells as well as Jurkat T cells. Dual luciferase reporter assays following the transfection of vectors containing the ATG16L1 3′-untranslated region (3′UTR) or truncated 3′UTR fragments suggest that the first half of ATG16L1 3′UTR in the 5′ end is more functional for miRNA targeting. Of 5 tested miRNAs with putative binding sites within the region, MIR142-3p, upon transient overexpression in the cells, resulted in decreased ATG16L1 mRNA and protein levels. Further observation demonstrated that the luciferase reporter vector with a mutant MIR142-3p binding sequence in the 3′UTR was unresponsive to the inhibitory effect of MIR142-3p, suggesting ATG16L1 is a gene target of MIR142-3p. Moreover, the regulation of ATG16L1 expression by a MIR142-3p mimic blunted starvation- and L18-MDP-induced autophagic activity in HCT116 cells. Additionally, we found that a MIR142-3p inhibitor enhanced starvation-induced autophagy in Jurkat T cells. Our study reveals MIR142-3p as a new autophagy-regulating small molecule by targeting ATG16L1, implying a role of this miRNA in intestinal inflammation and CD.  相似文献   

19.
The hepatitis B virus core protein (HBc), also named core antigen, is well-known for its key role in viral capsid formation and virus replication. Recently, studies showed that HBc has the potential to control cell biology activity by regulating host gene expression. Here, we utilized miRNA microarray to identify 24 upregulated miRNAs and 21 downregulated miRNAs in HBc-expressed HCC cells, which were involved in multiple biological processes, including cell motility. Consistently, the in vitro transwell assay and the in vivo tail-vein injection model showed HBc promotion on HCC metastasis. Further, the miRNA-target gene network analysis displayed that the deleted in liver cancer (DLC-1) gene, an important negative regulator for cell motility, was potentially targeted by several differentially expressed miRNAs in HBc-introduced cells. Introduction of miRNAs mimics or inhibitors and 3′UTR luciferase activity assay proved that miR-382-5p efficiently suppressed DLC-1 expression and its 3′-UTR luciferase reporter activity. Importantly, cotransfection of miR-382-5p mimics/inhibitors and the DLC-1 expression vector almost abrogated HBc promotion on cell motility, indicating that the miR-382-5p/DLC-1 axis is important for mediating HBc-enhanced HCC motility. Clinical HCC samples also showed a negative correlation between miR-382-5p and DLC-1 expression level. Furthermore, HBc-positive HCC tissues showed high miR-382-5p level and reduced DLC-1 expression. In conclusion, our findings revealed that HBc promoted HCC motility by regulating the miR-382-5p/DLC-1 axis, which might provide a novel target for clinical diagnosis and treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号