首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Staphylococcus epidermidis strains were isolated from the expressed human breast milk (EHM) of 14 healthy donor mothers. Genetic diversity was evaluated using RAPD-PCR REP-PCR and pulse-field gel electrophoresis (PFGE). PFGE allowed the best discrimination of the isolates, since it provided for the greatest diversity of the analyzed genomes. Among the S. epidermidis strains, resistance to gentamicin, tetracycline, erythromycin, clindamycin or vancomycin was detected, whilst four isolates were multiresistant. The results from our study demonstrate that staphylococci from EHM could be reservoirs of resistance genes, since we showed that tetK could be transferred from EHM staphylococci to Gram-negative Escherichia coli. Most of the staphylococcal strains displayed excellent proteolytic and lipolytic activities. Additionally, the presence of ica genes, which was related to their ability to form a biofilm on tissue culture plates, and the presence of virulence factors including autolysin/adhesin AtLE, point to their pathogenic potential.  相似文献   

2.
Food borne diseases are a major public health concern worldwide. Staphylococcus aureus is one of the potential food borne pathogens which causes nosocomial and community acquired infections. In the present study, 74 representative strains of S. aureus isolated and characterized in previous study from different milk samples were subjected to random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR to generate fingerprints to determine the genetic relationships of the isolated strains. A total of 20 RAPD patterns were generated and the number of amplified fragments obtained ranged from 0 to 8 with molecular weight ranging from 250 to 2000 bp. A dendrogram based on fingerprinting pattern grouped isolates into twelve major clusters (I–XII). In the case of ERIC-PCR 9 banding patterns were obtained with amplicons ranging from 1 to 8 and band sizes ranging from 250 to 2000 bp. A total of four major clusters (I–IV) were observed in the dendrogram based on ERIC fingerprints. The discrete banding patterns obtained both from ERIC-PCR and RAPD-PCR showed remarkably the genetic diversity of S. aureus. The findings of this study indicate that raw, bulk and pasteurized milk in the North-West Province was contaminated with toxigenic and multi-drug resistant S. aureus strains. This emphasizes the need to implement appropriate control measures to reduce contamination as well as the spread of virulent S. aureus strains to reduce the burden of disease in humans.  相似文献   

3.
Antibiotic-resistant Escherichia coli strains including extended-spectrum β-lactamase (ESBL) isolates are globally widespread in medical, food, and environmental sources. Some of these strains are considered the most pathogenic bacteria in humans. The present work examined the predominance of antibiotic resistance in E. coli strains in wound infections comparing with E. coli strains isolated from a raw milk as a potential source of those strains. The wound infections included abdomen, anus, arm, back, buttock, chest, foot, hand, head, leg, lung, mouth, neck, penis, thigh, toe, and vagina infections. In total, 161 and 153 isolates identified as E. coli were obtained from wound infections and raw milk, respectively. A Vitek 2 system innovated by bioMérieux, France was applied to perform the identification and susceptibility tests. The E. coli isolates that have ability to produce ESBL were detected by an ESBL panel and NO45 card (bioMérieux). Over half of the E. coli were from abdomen, back, and buttock wound infections. More than 50%of the E. coli isolates obtained from wound infections were resistant to cefazolin, ampicillin, cefuroxime, ciprofloxacin, mezlocillin, moxifloxacin, piperacillin, and tetracycline; 70% of the isolates from wound infections and 0% of the isolates from raw milk were E. coli isolates produced ESBL. The data showed that the strains resistance to multi-antibiotic and produced ESBL are more widespread among wound infections than in raw milk.  相似文献   

4.
This study aimed to correlate the presence of ica genes, biofilm formation and antimicrobial resistance in 107 strains of Staphylococcus epidermidis isolated from blood cultures. The isolates were analysed to determine their methicillin resistance, staphylococcal cassette chromosome mec (SCCmec) type, ica genes and biofilm formation and the vancomycin minimum inhibitory concentration (MIC) was measured for isolates and subpopulations growing on vancomycin screen agar. The mecA gene was detected in 81.3% of the S. epidermidis isolated and 48.2% carried SCCmec type III. The complete icaADBC operon was observed in 38.3% of the isolates; of these, 58.5% produced a biofilm. Furthermore, 47.7% of the isolates grew on vancomycin screen agar, with an increase in the MIC in 75.9% of the isolates. Determination of the MIC of subpopulations revealed that 64.7% had an MIC ≥ 4 μg mL-1, including 15.7% with an MIC of 8 μg mL-1 and 2% with an MIC of 16 μg mL-1. The presence of the icaADBC operon, biofilm production and reduced susceptibility to vancomycin were associated with methicillin resistance. This study reveals a high level of methicillin resistance, biofilm formation and reduced susceptibility to vancomycin in subpopulations of S. epidermidis. These findings may explain the selection of multidrug-resistant isolates in hospital settings and the consequent failure of antimicrobial treatment.  相似文献   

5.
Staphylococcus xylosus, Staphylococcus equorum, and Staphylococcus epidermidis strains were isolated from Bryndza cheese and identified using PCR method. The antimicrobial susceptibility of these strains was assessed using disc diffusion method and broth microdilution method. The highest percentage of resistance was detected for ampicillin and oxacillin, and in contrary, isolates were susceptible or intermediate resistant to ciprofloxacin and chloramphenicol. Fourteen of the S. xylosus isolates (45 %) and eleven of the S. equorum isolates (41 %) exhibited multidrug resistance. None of the S. epidermidis isolate was multiresistant. The phenotypic resistance to oxacillin was verified by PCR amplification of the gene mecA.  相似文献   

6.
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus. The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance:ermA, ermB, ermC,msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistantS. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination wasermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.  相似文献   

7.
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.  相似文献   

8.
Fecal samples obtained from 51 chronic carriers of S. typhi and S. schottmuelleri and from 35 healthy persons were studied. Strains of different species of Enterobacteriaceae were isolated and identified. The resistance of the isolated strains to the most commonly used antibiotics was determined. The fecal samples of the carriers were found to yield a greater number of strains than those of the healthy persons. Among the strains isolated from the carriers a variety of species was noted. S. typhi and S. schottmuelleri strains were found to be sensitive to the tested antibiotics. Antibiotic-resistant strains were mostly isolated from members of the medical staff.  相似文献   

9.
We previously reported on the detection and isolation of an indigenous population of Halobacillus from salt-damaged medieval wall paintings and building materials of Herberstein castle in St. Johann bei Herberstein in Styria, Austria. Several moderately halophilic, Gram-positive, endospore-forming Halobacillus-like bacteria could be again isolated by conventional enrichment from salt efflorescences collected in the medieval St. Virgil's chapel in Vienna. Comparative 16S rDNA sequence analyses showed that the St. Virgil isolates are most closely related (>98.5% sequence similarity) to Halobacillus trueperi, Halobacillus litoralis, and to our previous halobacilli strains obtained from the castle Herberstein. Based on 16S rDNA sequence analysis, the strains could be clustered in three different groups. Group I: St. Virgil strains S3, S4, S21, and S22 (99.8–100% sequence similarity); group II: Herberstein strains K3-1, I7, and the St. Virgil strain S20 (99.3–99.7% sequence similarity); and group III: Herberstein strains I3, I3A, and I3R (100% sequence similarity). Molecular typing by denaturing gradient gel electrophoresis (DGGE), random amplified polymorphic DNA (RAPD-PCR), and internal transcribed spacer-homoduplex–heteroduplex polymorphism (ITS-HHP) fingerprinting showed that all isolates are typeable by each of the methods. RAPD was the most discriminatory method. With respect to their physiological characteristics—i.e., growth in the presence of 5–20% (w/v) NaCl, no growth in the absence of NaCl, optimum growth at 37 °C in media containing 5–10% (w/v) NaCl, and optimum pH around 7.5–8.0—the St. Virgil isolates resembled our previously isolated strains. However, the St. Virgil strains showed some differences in their biochemical properties. St. Virgil isolates hydrolysed Tween 80, two isolates reduced nitrate, and no isolate liquefied gelatine. The recurrent isolation of halobacilli from salt efflorescences on historic buildings and monuments at two different geographical locations may indicate that this group of bacteria is common in salt-affected ruins.  相似文献   

10.
Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.  相似文献   

11.
From the nares of 11 healthy adults, 253 strains of coagulase negative staphylococcus were isolated and 88% of them were identified as Staphylococcus epidermidis using the API STAPH system. Chromosomal DNA fingerprinting of the isolated strains revealed that each person carried multiple types of S. epidermidis in his or her nares. The colonization of the strains was not stable; the types of the isolates changed in the first and the second examinations 5 months apart. The results contrasted with previous findings in which only one strain of S. aureus colonized persistently in the nares of healthy adults.  相似文献   

12.
Staphylococcus aureus causes infections both in community and hospital settings, nasal carriage is the important source of these infections. A total of 103 carrier isolates of S. aureus from 352 asymptomatic individuals were screened for methicillin-resistant S. aureus (MRSA) and exfoliative toxins (A, B and D) by two sets of multiplex PCRs. The overall nasal carriage of MRSA was found to be 13/352 (3.7 %), of which 4 were found to be positive for Panton valentine leucocidin (PVL). Twelve (11.65 %) strains were found to carry exfoliative toxins and belonged to one of the following spa types t159, t209 and t1515. High prevalence of exfoliative toxins, pvl and MRSA pose a major threat to public health, since the isolates were from the healthy in various community settings.  相似文献   

13.
Coagulase-negative staphylococci (CoNS) are the microorganisms most frequently isolated from clinical samples and are commonly found in neonatal blood cultures. Oxacillin is an alternative treatment of choice for CoNS infections; however, resistance to oxacillin can have a substantial impact on healthcare by adversely affecting morbidity and mortality. The objective of this study was to detect and characterise oxacillin-resistant CoNS strains in blood cultures of newborns hospitalised at the neonatal ward of the University Hospital of the Faculty of Medicine of Botucatu. One hundred CoNS strains were isolated and the mecA gene was detected in 69 of the CoNS strains, including 73.2% of Staphylococcus epidermidis strains, 85.7% of Staphylococcus haemolyticus strains, 28.6% of Staphylococcus hominis strains and 50% of Staphylococcus lugdunensis strains. Among these oxacillin-resistant CoNS strains, staphylococcal cassette chromosome mec (SCCmec) type I was identified in 24.6%, type II in 4.3%, type III in 56.5% and type IV in 14.5% of the strains. The data revealed an increase in the percentage of CoNS strains isolated from blood cultures from 1991-2009. Furthermore, a predominant SCCmec profile of the oxacillin-resistant CoNS strains isolated from neonatal intensive care units was identified with a prevalence of SCCmec types found in hospital-acquired strains.  相似文献   

14.
Staphylococcus epidermidis is a commensal inhabitant of the healthy human skin, but in the recent years, it has been recognized as a nosocomial pathogen especially in immunocompromised patients. The pathogenesis of S. epidermidis is thought to be based on its capacity to form biofilms on the surface of medical devices, where bacterial cells may persist, protected from host defence and antimicrobial agents. Rifampin has been shown to be one of the most active antimicrobial agents in the eradication of the staphylococcal biofilm. However, this antibiotic should not be used in monotherapy. Therefore, one of the objectives of our research was to study the efficacy of the tigecycline/rifampin combination against methicillin-resistant S. epidermidis embedded in biofilms. Of the 80 clinically significant S. epidermidis isolates, 75 strains possess the ability to form a biofilm. These bacteria formed the biofilm via ica-dependent mechanisms. However, other biofilm-associated genes, including aap (encoding accumulation-associated protein) and bhp (coding cell wall-associated protein), were present in 85 and 29 % of isolates, respectively. The biofilm structures of S. epidermidis strains were also analyzed in confocal laser scanning microscopy (CLSM) and the obtained image demonstrated differences in their architecture. In vitro studies showed that the MIC value for tigecycline against S. epidermidis growing in the biofilm ranged from 0.125 to 2 μg/mL. Tigecycline in combination with rifampin demonstrated higher activity against bacteria embedded in biofilms than tigecycline alone.  相似文献   

15.
This is the first report of filamentous actinobacteria isolated from surface-sterilized root tissues of healthy wheat plants (Triticum aestivum L.). Wheat roots from a range of sites across South Australia were used as the source material for the isolation of the endophytic actinobacteria. Roots were surface-sterilized by using ethanol and sodium hypochlorite prior to the isolation of the actinobacteria. Forty-nine of these isolates were identified by using 16S ribosomal DNA (rDNA) sequencing and found to belong to a small group of actinobacterial genera including Streptomyces, Microbispora, Micromonospora, and Nocardiodes spp. Many of the Streptomyces spp. were found to be similar, on the basis of their 16S rDNA gene sequence, to Streptomyces spp. that had been isolated from potato scabs. In particular, several isolates exhibited high 16S rDNA gene sequence homology to Streptomyces caviscabies and S. setonii. None of these isolates, nor the S. caviscabies and S. setonii type strains, were found to carry the nec1 pathogenicity-associated gene or to produce the toxin thaxtomin, indicating that they were nonpathogenic. These isolates were recovered from healthy plants over a range of geographically and temporally isolated sampling events and constitute an important plant-microbe interaction.  相似文献   

16.
The present study was performed to develop a fast and sensitive multiplex polymerase chain reaction protocol for routine diagnostics of American foulbrood. A new approach for detection of Paenibacillus larvae in putrid masses was described. Forty five samples of putrid masses obtained from bee combs suspicious for American foulbrood, a reference strain Paenibacillus larvae (NBIMCC 8478), clinical isolates and 4 strains of closely related bacterial species were included in experiments. Bacterial colonies?? DNA was isolated by heat and centrifugation method (standard procedure) and with prepGem commercial kit. DNA from putrid masses was isolated by standard and modified procedure. Three pairs of primers specific for 16S rRNA and one pair specific for 35 kDa metalloproteinase genes of Paenibacillus larvae were tested as single pair and in different combinations as multiplex PCR. The sensitivity of the multiplex PCR protocol for putrid masses, developed in study was 100%, versus 45.2% for the standard protocol. The developed multiplex PCR protocol could be successfully used for rapid and specific detection of Paenibacillus larvae in both putrid masses and isolated bacterial colonies.  相似文献   

17.
Staphylococcus epidermidis, a human commensal, is an important opportunistic, biofilm-forming pathogen and the main cause of late onset sepsis in preterm infants, worldwide. In this study we describe the characteristics of S. epidermidis strains causing late onset (>72 h) bloodstream infection in preterm infants and skin isolates from healthy newborns. Attachment and biofilm formation capability were analyzed in microtiter plates and with transmission electron microscopy (TEM). Clonal relationship among strains was studied with pulsed-field gel electrophoresis. Antimicrobial susceptibility testing was performed, as well as the detection of biofilm-associated genes and of the invasiveness marker IS256 with polymerase chain reaction. Blood and skin isolates had similar attachment and biofilm-forming capabilities and biofilm formation was not related to the presence of specific genes. Filament-like membrane structures were seen by TEM early in the attachment close to the device surface, both in blood and skin strains. Nine of the ten blood isolates contained the IS256 and were also resistant to methicillin and gentamicin in contrast to skin strains. S. epidermidis strains causing bloodstream infection in preterm infants exhibit higher antibiotic resistance and are provided with an invasive genetic equipment compared to skin commensal strains. Adhesion capability to a device surface seems to involve bacterial membrane filaments.  相似文献   

18.
Nasal carriage of Staphylococcus aureus (S. aureus) probably causes the transmission of infection between individuals in hospital and community. This study aimed to evaluate the molecular epidemiology and antibiotic resistance pattern of nasal carriage S. aureus in pediatric ward patients and personnel. A total of 122 Nasal samples were taken from 28 personnel and 94 hospitalized patients in the pediatric ward. Minimum Inhibitory Concentration (MIC) to vancomycin and cefoxitin was determined by Agar dilution method strips. All S. aureus isolates were analyzed by pulsed-field gel electrophoresis (PFGE). A total of 41 S. aureus were isolated from the patients. 16 isolates (39.09%) were hospital-associated S. aureus (HA-SA) and 25 (60.97%) were community-associated S. aureus (CA-SA); also, 13 S. aureus isolates were obtained from the personnel. Based on MIC results, all of S. aureus isolates were susceptible to vancomycin, and in 41 patient isolates, 13 isolates (31.7%) were resistant to cefoxitin (MRSA). Of 13 S. aureus isolates of the personnel, 3 (23%) isolates were MRSA. Totally 11 common clones and 13 single clones were obtained. In conclusion the prevalence of CA-SA in the ward was higher than that of HA-SA. In the strains obtained from a hospital ward, there was a high epidemiology, genotypic diversity in the studied ward. However, horizontal transfer of S. aureus was observed between patients and between personnel and patients, which indicated the risk of transmission of resistant strains in the hospital wards.  相似文献   

19.
Over a 17-month period (March 1999 to July 2000), a total of 814 cows' milk samples, 244 bulk raw and 567 commercially pasteurized (228 whole, 179 semiskim, and 160 skim), from 241 approved dairy processing establishments throughout the United Kingdom were tested for the presence of Mycobacterium paratuberculosis by immunomagnetic PCR (to detect all cells living and dead) and culture (to detect viable cells). Overall, M. paratuberculosis DNA was detected by immunomagnetic PCR in 19 (7.8%; 95% confidence interval, 4.3 to 10.8%) and 67 (11.8%; 95% confidence interval, 9.0 to 14.2%) of the raw and pasteurized milk samples, respectively. Confirmed M. paratuberculosis isolates were cultured from 4 (1.6%; 95% confidence interval, 0.04 to 3.1%) and 10 (1.8%; 95% confidence interval, 0.7 to 2.8%) of the raw and pasteurized milk samples, respectively, following chemical decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h. The 10 culture-positive pasteurized milk samples were from just 8 (3.3%) of the 241 dairy processing establishments that participated in the survey. Seven of the culture-positive pasteurized milk samples had been heat treated at 72 to 74°C for 15 s; the remainder had been treated at 72 to 75°C for the extended holding time of 25 s. When typed by restriction fragment length polymorphism and pulsed-field gel electrophoresis methods, some of the milk isolates were shown to be types distinct from those of laboratory strains in regular use within the testing laboratory. From information gathered at the time of milk sample collection, all indications were that pasteurization had been carried out effectively at all of the culture-positive dairies. That is, pasteurization time and temperature conditions complied with the legal minimum high-temperature, short-time process; all pasteurized milk samples tested phosphatase negative; and postprocess contamination was considered unlikely to have occurred. It was concluded that viable M. paratuberculosis is occasionally present at low levels in commercially pasteurized cows' milk in the United Kingdom.  相似文献   

20.

Background

Staphylococcus epidermidis orthopedic device infections are caused by direct inoculation of commensal flora during surgery and remain rare, although S. epidermidis carriage is likely universal. We wondered whether S. epidermidis orthopedic device infection strains might constitute a sub-population of commensal isolates with specific virulence ability. Biofilm formation and invasion of osteoblasts by S. aureus contribute to bone and joint infection recurrence by protecting bacteria from the host-immune system and most antibiotics. We aimed to determine whether S. epidermidis orthopedic device infection isolates could be distinguished from commensal strains by their ability to invade osteoblasts and form biofilms.

Materials and Methods

Orthopedic device infection S. epidermidis strains (n = 15) were compared to nasal carriage isolates (n = 22). Osteoblast invasion was evaluated in an ex vivo infection model using MG63 osteoblastic cells co-cultured for 2 hours with bacteria. Adhesion of S. epidermidis to osteoblasts was explored by a flow cytometric approach, and internalized bacteria were quantified by plating cell lysates after selective killing of extra-cellular bacteria with gentamicin. Early and mature biofilm formations were evaluated by a crystal violet microtitration plate assay and the Biofilm Ring Test method.

Results

No difference was observed between commensal and infective strains in their ability to invade osteoblasts (internalization rate 308+/−631 and 347+/−431 CFU/well, respectively). This low internalization rate correlated with a low ability to adhere to osteoblasts. No difference was observed for biofilm formation between the two groups.

Conclusion

Osteoblast invasion and biofilm formation levels failed to distinguish S. epidermidis orthopedic device infection strains from commensal isolates. This study provides the first assessment of the interaction between S. epidermidis strains isolated from orthopedic device infections and osteoblasts, and suggests that bone cell invasion is not a major pathophysiological mechanism in S. epidermidis orthopedic device infections, contrary to what is observed for S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号