首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An annular internally illuminated photobioreatcor (IIPBR) configuration based on the airlift/bubble column principles was developed and validated at an 18 l prototype scale using Scenedemus sp. and Nannochloropsis salina in batch and semi-continuous modes, at constant light supply and constant gas-to-culture volume ratio, but at varying CO2-to-air ratios. Highest biomass production was recorded at CO2-to-air ratio of 4% with Scenedesmus sp. and at 1% with Nannochloropsis salina. The energetic performance of this IIPBR was quantified in terms of biomass productivity per unit energy input, P/E (g W?1 day?1), considering energy input for illumination and for pneumatic mixing and circulation. Under optimal conditions, the IIPBR evaluated in this study achieved P/E of 1.42 g W?1 day?1 for Scenedesmus sp. and P/E of 0.34 g W?1 day?1 for Nannochloropsis salina. These P/E values are better than those estimated for airlift and bubble column photobioreactor configurations reported in the literature.  相似文献   

2.
The high cost of algal cultivation has been a barrier associated with the commercialisation of algal biodiesel. Therefore, this study aimed to enhance lipid production by optimising the nutrient supply to benefit the coexistence of Dunaliella salina and Nannochloropsis gaditana. The effects on biomass and lipid production of using different proportions of D. salina and N. gaditana, urea and NaHCO3 were optimised by response surface method with a 17-run Box–Behnken design. The optimal conditions for the algal growth are 58 % of D. salina in the mixture at OD680, 150 μL day?1 urea (0.0044 g day?1) and no addition of NaHCO3. The biomass concentration and lipid production reached 1.00 and 0.383 g L?1, respectively, which are exceeded by the amount before optimisation, indicating the efficiency of the model obtained by response surface method.  相似文献   

3.
Withania somnifera is an important medicinal plant that contains withanolides as bioactive compounds. We have investigated the effects of macroelements and nitrogen source in hairy roots of W. somnifera with the aim of optimizing the production of biomass and withanolide A content. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0, 0.5, 1.0, 1.5 and 2.0× strengths and of nitrogen source [NH4 +/NO3 ? (0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 mM)] in Murashige and Skoog medium were evaluated for biomass and withanolide A production. The highest accumulation of biomass (139.42 g l?1 FW and 13.11 g l?1 DW) was recorded in the medium with 2.0× concentration of KH2PO4, and the highest production of withanolide A was recorded with 2.0× KNO3 (15.27 mg g?1 DW). The NH4 +/NO3 ? ratio also influenced root growth and withanolide A production, with both parameters being larger when the NO3 ? concentration was higher than that of NH4 +. Maximum biomass growth (148.17 g l?1 FW and 14.79 g l?1 DW) was achieved at NH4 +/NO3 ? ratio of 14.38/37.60 mM, while withanolide A production was greatest (14.68 mg g?1 DW) when the NH4 +/NO3 ? ratio was 0.00/18.80 mM. The results are useful for the large scale cultivation of Withania hairy root culture for the production of withanolide A.  相似文献   

4.
The biotreatment of flue gases with algae cultures is a promising option to sequestrate CO2, yet the emission of other greenhouse gases (GHG) from the cultures can hamper their environmental benefit. Quantitative data on the sequestration potential for CO2 and NO x in relation to the direct production of CH4 and N2O are urgently required. The present study assessed the flows of carbon (C) and nitrogen (N) through cultures of the green alga Dunaliella salina, supplied with biodiesel flue gas, by means of mass balancing. D. salina was grown in artificially lighted, field- (42-L bubble column reactor) and laboratory-scale cultures (23 °C, pH 7.5). In the bubble column reactor, algae grew with an average specific growth rate of 0.237 day?1 under flue gas supplementation (6.3 % (v/v) CO2, 1.2 ppmv NO x ), and CO2 was retained to 39 % in the system. The specific sequestration rate for CO2 was low, with 0.13 g CO2 L?1 day?1. Cultures emitted up to 13.03 μg CH4 L?1 day?1 and 4261 μg N2O L?1 day?1. The moderate retention of NO x -N was outweighed by emissions of N2O-N, and total N in the system decreased by 15.48 % during the 9-day trial. Results suggest that GHG production was mainly the outcome of anaerobic microbial processes and their emission was lower in pre-sterilized cultures. Under the tested conditions, up to six times more CO2 equivalents were emitted during flue gas treatment. Therefore, the direct GHG emissions of algae culture systems, intended for flue gas treatment (i.e. open ponds) need to be reviewed critically.  相似文献   

5.
The addition of bicarbonate (NaHCO3; 0, 1, or 2 g L?1) to microalgal cultures has been evaluated for two species (Tetraselmis suecica and Nannochloropsis salina) in respect of growth and biochemical composition. In batch cultures, addition of bicarbonate (1 g L?1) resulted in significantly (P?<?0.05) higher final mean cell abundances for both species. No differences in specific growth rates (SGRs) were recorded for T. suecica between treatments; however, increasing bicarbonate addition decreased SGR values in N. salina cultures. Bicarbonate addition (1 g L?1) significantly improved nitrate utilisation from the external media and photosynthetic efficiency (F v /F m ) in both species. For both T. suecica and N. salina, bicarbonate addition significantly increased the cellular concentrations of total pigments (3,432–3,587 and 19–37 fg cell?1, respectively) compared to cultures with no additional bicarbonate (1,727 and 11 fg cell?1, respectively). Moreover, final concentrations of total cellular fatty acids in T. suecica and N. salina cultures supplemented with 2 g L?1 bicarbonate (7.6?±?1.2 and 1.8?±?0.1 pg cell?1, respectively) were significantly higher than those cells supplemented with 0 or 1 g L?1 bicarbonate (3.2–3.5 and 0.9–1.0 pg cell?1, respectively). In nitrate-deplete cultures, bicarbonate addition caused species-specific differences in the rate of cellular lipid production, rates of change in fatty acid composition and final lipid levels. In summary, the addition of sodium bicarbonate is a viable strategy to increase cellular abundance and concentrations of pigments and lipids in some microalgae as well as the rate of lipid accumulation in nitrate-deplete cultures.  相似文献   

6.
The effect of nitrogen starvation on the NO3-dependent induction of nitrate reductase (NR) and nitrite reductases (NIR) has been investigated in the halophilic alga Dunaliella salina. When D. salina cells previously grown in a medium with NH 4 + as the only nitrogen source (NH 4 + -cells) were transferred into NO 3 ? medium, NR was induced in the light. In contrast, when cells previously grown in N-free medium were transferred into a medium containing NO 3 ? , NR was induced in light or in darkness. Nitrate-dependent NR induction, in darkness, in D. salina cells previously grown at a photon flux density of 500 umol · m?2 s?1 was observed after 4 h preculture in N-free medium, whilst in cells grown at 100 umol · m?2 s?1 NR induction was observed after 7–8 h. An inhibitor of mRNA synthesis (6-methylpurine) did not inhibit NO 3 ? -induced NR synthesis when the cells, previously grown in NH 4 + medium, were transferred into NO 3 ? medium (at time 0 h) after 4-h-N starvation. However, when 6-methylpurine was added simultaneously with the transfer of the cells from NH 4 + to NO 3 ? medium (at time 0 h), NO 3 ? induced NR synthesis was completely inhibited. The activity of NIR decreased in N-starved cells and the addition of NO 3 ? to those cells greatly stimulated NIR activity in the light. The ability to induce NR in darkness was observed when glutamine synthetase activity reached its maximal level during N starvation. Although cells grown in NO 3 ? medium exhibited high NR activity, only 0.33% of the total NR was found in intact chloroplasts. We suggest that the ability, to induce NR in darkness is dependent on the level of N starvation, and that NR in D. salina is located in the cytosol. Light seems to play an indirect regulatory role on NO 3 ? uptake and NR induction due to the expression of NR and NO 3 ? -transporter mRNAs.  相似文献   

7.
The cryptophyte Rhodomonas salina is widely used as feed for copepod cultures. However, culturing conditions to obtain high-quality algae have not yet been efficiently optimized. Therefore, we aimed to develop a cultivation protocol for R. salina to optimize its nutritional value and provide technical recommendations for later large-scale production in algal photobioreactors. We studied photosynthesis, growth, pigments, fatty acid (FA) and free amino acid (FAA) composition of R. salina cultured at different irradiances (10–300 μmol photons m?2 s?1) and nutrient availability (deficiency and excess). The optimal range of irradiance for photosynthesis and growth was 60–100 μmol photons m?2 s?1. The content of chlorophylls a and c decreased with increasing irradiance while phycoerythrin peaked at irradiances of 40–100 μmol photons m?2 s?1. The total FA content was maximal at optimal irradiances for growth, especially under nutrient deficiency. However, highly unsaturated fatty acids, desired components for copepods, were higher under nutrient excess. The total FAA content was highest at limiting irradiances (10–40 μmol photons m?2 s?1) but a better composition with a higher fraction of essential amino acids was obtained at saturated irradiances (60–140 μmol photons m?2 s?1). These results demonstrate that quality and quantity of FA and FAA of R. salina can be optimized by manipulating the irradiance and nutrient conditions. We suggest that R. salina should be cultivated in a range of irradiance 60–100 μmol photons m?2 s?1 and nutrient excess to obtain algae with high production and a balanced biochemical composition as feed for copepods.  相似文献   

8.
The process of the simultaneous production and extraction of carotenoids, milking, of Dunaliella salina was studied. We would like to know the selectivity of this process. Could all the carotenoids produced be extracted? And would it be possible to vary the profile of the produced carotenoids and, consequently, influence the type of carotenoids extracted? By using three different D. salina strains and three different stress conditions, we varied the profiles of the carotenoids produced. Between Dunaliella bardawil and D. salina 19/18, no remarkable differences were seen in the extraction profiles, although D. salina 19/18 seemed to be better extractable. D. salina 19/25 was not “milkable” at all. The milking process could only be called selective for secondary carotenoids in case gentle mixing was used. In aerated flat-panel photobioreactors, extraction was much better, but selectiveness decreased and also chlorophyll and primary carotenoids were extracted. This was possibly related to cell damage due to shear stress.  相似文献   

9.
Oils, carbohydrates, and fats generated by microalgae are being refined in an effort to produce biofuels. The research presented here examines two marine microalgae, Nannochloropsis salina (green alga) and Phaeodactylum tricornutum (diatom), when grown with 0 (no addition), 0.5, 1.0, 2.0, and 5.0 g L?1 NaHCO3 added to an f/2 medium during the growth phase (GP) and a nutrient induced (nitrate limitation) lipid formation phase (LP). We hypothesize that the addition of NaHCO3 is a sustainable and practical strategy to increase cellular density and concentrations of lipids in microalgae as well as the rate of lipid accumulation. In N. salina, final cell densities were significantly (p?<?0.05) higher in the NaHCO3-treated cells than the control while in P. tricornutum the cell densities were higher with >[NaHCO3] during the GP. During the LP, cell densities were generally higher in the NaHCO3-treated cells compared with controls. F V/F M (efficiency of photosystem II) patterns paralleled those for cell density with generally higher values with higher concentrations of NaHCO3 and significantly different values between controls and 5.0 g L?1 NaHCO3 at the end of the GP (p?<?0.05). F V/F M was variable between treatments in P. tricornutum (0.3–0.65) but less so in N. salina for (0.5–0.7) regardless of [NaHCO3]. The lipid index (measured with Nile red), used as a proxy for triacylglycerides (TAGs), was 10.2?±?6.5 and 4.4?±?2.9 (fluorescence units/OD cells ×1000) for N. salina and P. tricornutum, respectively, at the end of the GP. At the end of the LP, the lipid index was eight and four times higher than during the GP in the corresponding 5.0 g L?1 NaHCO3 treatments, revealing that N. salina was accumulating more lipid than P. tricornutum. Dry weights essentially doubled during LP compared with GP for N. salina; this was not the case for P. tricornutum. In general, the percentage of ash in dry weights was significantly higher in the LP relative to the corresponding GP treatments for P. tricornutum; this was not the case for N. salina. During the LP, there was also less soluble protein in N. salina compared to GP; differences were not significant in cells growing with 2.0 or 5.0 g L?1 NaHCO3. In P. tricornutum, faster growing cells had more soluble protein during the GP and LP; differences between treatments were significant. P. tricornutum generally accumulated significantly more crude protein than N. salina at higher [NaHCO3]; there was three times more crude protein in the highest NaHCO3 (5.0 g L?1) treatment compared with the controls. C:N ratios (mol:mol) were similar across treatments during GP: 7.03?±?0.12 and 10.16?±?0.41 for N. salina and P. tricornutum, respectively. Further, C:N ratios increased with increasing [NaHCO3] during LP. Species-specific fatty acid methyl ester (FAMEs) profiles were observed. While C16:0 was lower in P. tricornutum compared to N. salina, the diatom produced more C16:1 and C14 but not C18:3. Monounsaturated fatty acids (MUFA) significantly increased in N. salina in the LP compared to GP and in response to increasing [NaHCO3] (t tests; p?<?0.05). Saturated fatty acids (SFA) responded similarly but to a lesser degree. There were more polyunsaturated fatty acids (PUFA) in N. salina than MUFAs or SFAs. In P. tricornutum, there were generally more SFAs, MUFAs and PUFAs in P. tricornutum during LP than GP in the corresponding NaHCO3 treatments. These findings reveal the importance of considering NaHCO3 as a supplemental carbon source in the culturing marine phytoplankton in large-scale production for biofuels.  相似文献   

10.
The present study was conducted to test the effects of KNO3, KH2PO4, and CaCl2 on shoot multiplication, root proliferation, and accumulation of phytochemicals in in vitro cultures of Oroxylum indicum. The results indicate that modifying the MS salt formulation in relation to particular inorganic nutrients highly affected shoot multiplication, root proliferation, and accumulation of flavonoids in in vitro cultures. A concentration of 0.60 g L?1 CaCl2 resulted in the highest frequency of shoot regeneration (5.6 shoots per explant). A concentration of 0.40 g L?1 CaCl2 resulted in the highest frequency of root regeneration (7.8 roots per shoot). Modifications of the concentrations of inorganic salts were also found to be advantageous for production media for both multiple shoots and shoot-derived root in vitro cultures. Multiple shoots generated on shoot induction medium with a concentration of 0.60 g L?1 CaCl2 and roots generated on root induction medium with a concentration of 1.5 g L?1 KNO3 yielded about a five times higher flavonoid level than cultures generated on control medium respectively.  相似文献   

11.
The interactive effects of light intensity, NaCl, nitrogen, and phosphorus on intracellular biomass content and extracellular polymeric substance production were assessed for Arthrospira sp. (Spirulina) in a two-phase culture process using principal component analysis and central composite face design. Under high light intensity (120 μmol photons m?2?s?1) and low NaCl (1 gL?1), NaNO3, and K2HPO4 (0.5 g L?1), the carbohydrate content was maximized to 26.61%. Interaction of both K2HPO4 (1.6 gL?1) and NaCl (1.19 gL?1) with low NaNO3 (0.5 gL?1) achieved the maximum content of lipids (15.62%), while high NaCl (40 gL?1), K2HPO4, and NaNO3 (4.5 gL?1) enhanced mainly total carotenoids (0.85%). Conversely, under low light intensity of 10 μmol photons m?2?s?1 combined with 11.76 gL?1 of NaCl, 0.5 gL?1 of NaNO3, and 2.68 gL?1 of K2HPO4, the phycobiliprotein content reached its highest level (16.09%). The maximum extracellular polymeric substance (EPS) production (0.902 gg?1?DW) was triggered under moderate light of 57.25 μmol photons m?2?s?1 and interaction of high NaCl (40 gL?1) and K2HPO4 (4.5 gL?1) with low NaNO3 (0.5 gL?1). The maximization ratios of intracellular biomass content in terms of carbohydrate, lipid, total carotenoid, phycobiliprotein, and EPS production were 3.55-, 1.73-, 9.55-, 2.92-, and 1.46-fold, respectively, greater than those obtained at optimal growth conditions. This study demonstrated that the multiple stress factors applied to the adopted two-phase culture process could be a promising strategy to produce biomass enriched in various high-value compound.  相似文献   

12.
Large improvements in biomass and lipid production are required to make massive scale algal biodiesel production an economic reality. The application of the biodiversity strategy to enhance algal biomass as biofuel feedstock is little. The algal diversity was manipulated in this study to investigate the effects of a combination of biodiversity complementarity and a new medium consisting of seawater and agricultural fertilizer on lipid productivity. The algae diverse community includes two strains of Dunaliella salina (Dunaliella salina 19/30 and 19/18) and three species of Nannochloropsis (Nannochloropsis oculata, Nannochloropsis salina, and Nannochloropsis gaditana). The results showed that the most diverse community (5 species) produced an average of sixfold more biomass in the new medium than did the standard f/2 culture medium. The most diverse polyculture had the highest growth rate (1.01 day?1), biomass (1.2 g L?1), and lipid productivity (0.31 g L?1 day?1). The assessment of algal polycultures relative to monocultures is particularly interesting and novel for this biofuel field, and the observations that these polycultures resulted in significant lipid productivity improvements are very useful addition to the biofuel research. The possible mechanism (resource diversity) to explain the synergy in mixed cultures warrants further investigation.  相似文献   

13.
Abstract

Growth and production of carotenoid in three Dunaliella species (Dunaliella salina (Dunal) Teodoresco, Dunaliella bardawil Ben-Amotz & Avron and Dunaliella sp.) were investigated using flat-plate photobioreactors in outdoor conditions with two optical paths (3?cm and 5?cm). The experiment was conducted in duplicate and lasted four weeks during which light intensity, temperature, pH and optical density were checked daily. The pigment production (total carotenoid and chlorophyll a) was monitored every two days. To induce an additional stress besides temperature and light intensity, two different salt concentrations were used, i.e. 6% and 8% NaCl. The highest growth in all treatment groups was noticed for Dunaliella sp. followed by D. bardawil and D. salina. D. salina produced a higher content of carotenoid concentrations corresponding to 5?cm/8% and 5?cm/6% groups; 779.102?±?0.434?μg.mL?1 and 694.326?±?0.098?μg.mL?1 were registered at the end of the experiment. The same species had also greater content of β-carotene.  相似文献   

14.
Improvements in pyruvate production process were examined using Escherichia coli BW25113?pta/pHfdh strain carrying the formate dehydrogenase gene of Mycobacterium vaccae to change the redox status of the cells. Glucose and formate concentrations, and oxygenation levels determined previously in a shake-flask culture were applied for pyruvate production in a 1 l fermenter. However, pyruvate was not produced under the examined conditions. Detailed pH measurements during the fermenter culture using CaCO3 revealed that maintaining the pH value around 6.0 plays an important role in stabilizing the pyruvate accumulation. In the pH-adjusting culture around 6.0 with NaOH solution, the concentration and yield of pyruvate were 8.96 g l?1 and 0.48 g pyruvate g glucose?1, respectively, which were significantly higher than the values reported in the shake-flask culture (6.79 g l?1 and 0.32 g pyruvate g glucose?1).  相似文献   

15.
Biofuels derived from non-crop sources, such as microalgae, offer their own advantages and limitations. Despite high growth rates and lipid accumulation, microalgae cultivation still requires more energy than it produces. Furthermore, invading organisms can lower efficiency of algae production. Simple environmental changes might be able to increase algae productivity while minimizing undesired organisms like competitive algae or predatory algae grazers. Microalgae are susceptible to pH changes. In many production systems, pH is kept below 8 by CO2 addition. Here, we uncouple the effects of pH and CO2 input, by using chemical pH buffers and investigate how pH influences Nannochloropsis salina growth and lipid accumulation as well as invading organisms. We used a wide range of pH levels (5, 6, 7, 8, 9, and 10). N. salina showed highest growth rates at pH 8 and 9 (0.19?±?0.008 and 0.19?±?0.011, respectively; mean ± SD). Maximum cell densities in these treatments were reached around 21 days into the experiment (95.6?×?106?±?9?×?106 cells mL?1 for pH 8 and 92.8?×?106?±?24?×?106 cells mL?1 for pH 9). Lipid accumulation of unbuffered controls were 21.8?±?5.8 % fatty acid methyl esters content by mass, and we were unable to trigger additional significant lipid accumulation by manipulating pH levels at the beginning of stationary phase. Ciliates (grazing predators) occurred in significant higher densities at pH 6 (56.9?±?39.6?×?104 organisms mL?1) than higher pH treatments (0.1–6.8?×?104 organisms mL?1). Furthermore, the addition of buffers themselves seemed to negatively impact diatoms (algal competitors). They were more abundant in an unbuffered control (12.7?±?5.1?×?104 organisms mL?1) than any of the pH treatments (3.6–4.7?×?104 organisms mL?1). In general, pH values of 8 to 9 might be most conducive to increasing algae production and minimizing invading organisms. CO2 addition seems more valuable to algae as an inorganic carbon source and not as an essential mechanism to reduce pH.  相似文献   

16.
In this work eighteen red yeasts were screened for carotenoids production on glycerol containing medium. Strain C2.5t1 of Rhodotorula glutinis, that showed the highest productivity, was UV mutagenized. Mutant 400A15, that exhibited a 280 % increase in β–carotene production in respect to the parental strain, was selected. A central composite design was applied to 400A15 to optimize carotenoids and biomass productions. Regression analyses of the quadratic polynomial equations obtained (R2 = 0.87 and 0.94, for carotenoids and biomass, respectively) suggest that the models are reliable and significant (P < 0.0001) in the prediction of carotenoids and biomass productions on the basis of the concentrations of crude glycerol, yeast extract and peptone. Accordingly, total carotenoids production achieved (14.07 ± 1.45 mg l?1) under optimized growth conditions was not statistically different from the maximal predicted (14.64 ± 1.57 mg l?1) (P < 0.05), and it was about 100 % higher than that obtained under un-optimized conditions. Therefore mutant 400A15 may represent a biocatalyst of choice for the bioconversion of crude glycerol into value-added metabolites, and a tool for the valorization of this by-product of the biodiesel industry.  相似文献   

17.
Integrative processes for the production of bioenergy and biopolymers are gaining importance in recent years as alternatives to fossil fuels and synthetic plastics. In the present study, Bacillus thuringiensis strain EGU45 has been used to generate hydrogen (H2), polyhydroxybutyrate (PHB) and new co-polymers (NP). Under batch culture conditions with 250 ml synthetic media, B. thuringiensis EGU45 produced up to 0.58 mol H2/mol of glucose. Effluent from the H2 production stage was incubated under shaking conditions leading to the production of PHB up to 95 mg/l along with NP of levulinic acid up to 190 mg/l. A twofold to fourfold enhancement in PHB and up to 1.5 fold increase in NP yields was observed on synthetic medium (mixture of M-9+GM-2 medium in 1:1 ratio) containing at 1–2 % glucose concentration. The novelty of this work lies in developing modified physiological conditions, which induce bacterial culture to produce NP.  相似文献   

18.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

19.
Optimal C:N ratio for the production of red pigments by Monascus ruber   总被引:1,自引:0,他引:1  
The carbon-to-nitrogen (C:N) ratio in the biomass of microfungi tends to be quite different (e.g. 10–15) compared with the C:N ratio in the red pigments (e.g. >20) of the fungus Monascus ruber. Therefore, determining an optimal C:N ratio in the culture medium for maximizing the production of the pigments is important. A culture medium composition is established for maximizing the production of the red pigment by the fungus M. ruber ICMP 15220 in submerged culture. The highest volumetric productivity of the red pigment was 0.023 AU L?1 h?1 in a batch culture (30 °C, initial pH of 6.5) with a defined medium of the following composition (g L?1): glucose (10), monosodium glutamate (MSG) (10), MgSO4·7H2O (0.5), KH2PO4 (5), K2HPO4 (5), ZnSO4·7H2O (0.01), FeSO4·7H2O (0.01), CaCl2 (0.1), MnSO4·H2O (0.03). This medium formulation had a C:N mole ratio of 9:1. Under these conditions, the specific growth rate of the fungus was 0.043 h?1 and the peak biomass concentration was 6.7 g L?1 in a 7-day culture. The biomass specific productivity of the red pigment was 1.06 AU g?1 h?1. The best nitrogen source proved to be MSG although four other inorganic nitrogen sources were evaluated.  相似文献   

20.
The quantitative and qualitative effects of light on carotenoid production by Spirulina were studied. Maximum total carotenoid production was measured in cells grown under white light at an irradiance of 432 μmol photon m?2 s?1, the onset of light saturation for this organism as determined by growth rates. A true maximum may exist at irradiances above 1500 μmol photon m?2 s?1 under white light. Individual carotenoids responded differently to light conditions. Under white light, β-carotene and echinenone were most abundant at the lowest and highest irradiance levels tested. Myxoxanthophyll and lutein/zeaxanthin did not change over the same irradiance range. Under red and blue light, we found decreased values of myxoxanthophyll, while β-carotene increased and lutein/zeaxanthin and echinenone showed little change. In general, maximum carotenoid production requires optimization of the culture conditions that favor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号