首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing recognition that both competition and facilitation are important drivers of plant community dynamics in arid and semi-arid environments. Decades of research have provided a litany of examples of the potential for shrubs as nurse plants for establishment of desirable species, especially in water-limited environments. However, interactions with the existing understory community may alter the outcome of interactions between shrubs and understory plants. A manipulative experiment was conducted to disentangle interactions between a native forb species (Penstemon palmeri A. Gray), a native shrub (Artemisia tridentata Nutt.), and a diverse understory of exotic and native forbs and grasses in a semi-arid shrubland of Northern Utah, USA. Seedlings of P. palmeri were transplanted in a factorial design: (1) beneath shrub canopies or into their interspaces and (2) with understory interactions retained or removed. Transplant survival was tracked for roughly 1 year. Shrubs appeared to facilitate P. palmeri survival while interactions with the existing understory community were equivalently negative, leading to overall neutral interactions. Further, positive shrub interactions and negative understory interactions appeared to operate independently and simultaneously. While the debate over the importance of facilitation and competition in driving plant community dynamics continues, our observations strongly suggest that both have considerable effects on plant establishment in A. tridentata communities. Furthermore, our results inform the conservation and restoration of P. palmeri populations, and suggest the utility of nurse shrubs and/or understory thinning as strategies for increasing the diversity of desirable species in the arid and semi-arid western United States shrublands.  相似文献   

2.
Nurse plants offer microclimates that are favourable to plant growth of understory native vegetation, thus facilitating ecological restoration in degraded old fields. This study examined the impact of three nurse plants on vegetation diversity and soil physical properties in old fields located at Lapalala Wilderness, South Africa. Vegetation surveys in plots measuring 5 m x 5 m under and outside the canopy of nurse plants in both old field and natural sites were conducted. Top soils under and outside the nurse plants canopy were collected in all plots and quantified for soil moisture, soil penetration resistance and soil water repellency. Results indicate that species diversity was high under plant canopy compared to outside plant canopy for all nurse plants. Soils under nurse plants canopy showed improved soil moisture and soil penetration resistance compared to soils outside plant canopy, but no differences were reported for soil water repellency. The study concludes that the presence of native plants under nurse plants canopy points to a positive vegetation recovery trajectory. For vegetation and soil restoration to be effective in Lapalala Wilderness old fields, nurse plants should be protected and active restoration, e.g. seeding or seedling sowing under nurse plants canopy should be considered.  相似文献   

3.
Facilitation among plants mediated by grazers occurs when an unpalatable plant extends its protection against grazing to another plant. This type of indirect facilitation impacts species coexistence and ecosystem functioning in a large array of ecosystems worldwide. It has nonetheless generally been understudied so far in comparison with the role played by direct facilitation among plants. We aimed at providing original data on indirect facilitation at the community scale to determine the extent to which indirect facilitation mediated by grazers can shape plant communities. Such experimental data are expected to contribute to refining the conceptual framework on plant–plant–herbivore interactions in stressful environments. We set up a 2‐year grazing exclusion experiment in tropical alpine peatlands in Bolivia. Those ecosystems depend entirely on a few, structuring cushion‐forming plants (hereafter referred to as “nurse” species), in which associated plant communities develop. Fences have been set over two nurse species with different strategies to cope with grazing (direct vs. indirect defenses), which are expected to lead to different intensities of indirect facilitation for the associated communities. We collected functional traits which are known to vary according to grazing pressure (LDMC, leaf thickness, and maximum height), on both the nurse and their associated plant communities in grazed (and therefore indirect facilitation as well) and ungrazed conditions. We found that the effect of indirectly facilitated on the associated plant communities depended on the functional trait considered. Indirect facilitation decreased the effects of grazing on species relative abundance, mean LDMC, and the convergence of the maximum height distribution of the associated communities, but did not affect mean height or cover. The identity of the nurse species and grazing jointly affected the structure of the associated plant community through indirect facilitation. Our results together with the existing literature suggest that the “grazer–nurse–beneficiary” interaction module can be more complex than expected when evaluated in the field.  相似文献   

4.
林火干扰对北方针叶林林下植被的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
林下植被在北方针叶林植被群落中的物种多样性最高, 且具有较高的生物量周转率和地上部分净初级生产力, 对北方针叶林生态系统功能起着重要作用。火干扰是决定北方针叶林林下植被结构与功能的一个重要景观过程。该文综述了火干扰是如何通过与地形、火前林冠组成的交互作用而影响环境资源和林下植被的。最近的研究表明: 林下植被能够影响火后树木更新苗的定植、重建速率及森林演替轨迹; 林下植被还会通过影响元素的生物地球化学过程(凋落物降解和养分循环)影响林下环境资源的数量与异质性。因此, 研究火后初期北方针叶林林下植被的动态变化, 对于物种多样性保护和森林管理具有重要意义。  相似文献   

5.
Specific composition and species clonal traits were characterized along combined flooding and grazing gradients to answer two questions. i) To what extent does the interaction of flooding and grazing influence the clonal characteristics of the vegetation? ii) Are the effects of both environmental factors independent or interactive? This study was carried out in a wet meadow along the Atlantic coast (France). Three plant communities (hygrophilous, meso-hygrophilous and mesophilous) were distinguished along a flooding gradient and five levels of grazing pressure were controlled through an experimental design (from no grazing to heavy grazing). We monitored species composition and retrieved, for each species, the type of clonal growth organs (CGOs) and clonal traits from the CLO-PLA3 database. We identified two syndromes of clonal traits: ??above-ground splitters?? and ??below-ground integrators??. Clonal traits played a key role in plant assembly in the studied meadows. The interaction of both environmental factors selected for particular syndromes of clonal traits; however, flooding had a stronger filtering effect than grazing. The hygrophilous community was dominated by above-ground splitters, whereas the meso-hygrophilous vegetation was dominated by below-ground integrators. In the mesophilous community, clonal composition was the most diverse and shared clonal traits with the vegetation of both the hygrophilous and meso-hygrophilous communities. Grazing impact on CGOs and clonal traits differed between plant communities, i.e., the effect of grazing was modulated by the flooding regime. This study confirmed that vegetation responses to grazing might depend on the pool of traits, primarily filtered by environmental factors such as flooding.  相似文献   

6.
The interspecific plant interactions along grazing and aridity stress gradients represent a major research issue in plant ecology. However, the combined effects of these two factors on plant–plant interactions have been poorly studied in the northeast of Iran. To fill this knowledge gap, 144 plots were established in 12 study sites with different grazing intensities (high vs. low) and climatic characteristics (arid vs. semiarid) in northeastern Iran. A dominant shrub, Artemisia kopetdaghensis, was selected as the model species. Further, we studied changes in plant life strategies along the combined grazing and aridity stress gradients. In this study, we used relative interaction indices calculated for species richness, Shannon diversity, and species cover to determine plant–plant interactions using linear mixed‐effect models (LMM). The indicator species analysis was used to identify the indicator species for the undercanopy of shrub and for the adjacent open areas. The combined effects of grazing and aridity affected the plant–plant interactions and plant life strategies (CSR) of indicator species. A. kopetdaghensis showed the highest facilitation effect under high stress conditions (high grazing, high aridity), which turned into competition under the low stress conditions (low grazing, low aridity). In the arid region, the canopy of the shrub protected ruderals, annual forbs, and grasses in both high and low grazing intensities. In the semiarid region and high grazing intensity (low aridity/high grazing), the shrubs protected mostly perennial forbs with C‐strategy. Our findings highlight the importance of context‐dependent shrub management to restore the vegetation damaged by the intensive grazing.  相似文献   

7.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

8.
Grazing impacts the structure and functional properties of vegetation through floristic changes (i.e., long-term effect) and current defoliation (i.e., short-term effect). The aim of this study was to assess the relative importance of these two grazing effects on productivity (ANPP) and plant quality (C/N ratio) among plant patches submitted to a variety of grazing intensity for several years. Long-term grazing effect was measured by comparing ANPP and C/N ratio among plant patches with contrasting floristic composition. Short-term impact of grazing was measured by comparing ANPP and C/N in plant patches, with and without defoliation. Floristic contrasts led to a lower ANPP in highly grazed patches than in lightly grazed ones. This result may be related to the increasing proportion of grazing-tolerant and grazing-avoiding species with increasing grazing intensity. Vegetation C/N contrasts were recorded among grazed patches but did not linearly relate to grazing intensity. Short-term effect of current-year defoliation on ANPP was limited as vegetation compensated for biomass removal. No evidence for grazing-enhancement of ANPP was found even at moderate grazing intensity. Long-term floristic changes with grazing thus appeared to be the main driving factor of variations in ANPP. In contrast, C/N ratio showed no general and consistent variation along the grazing gradient but varied consistently depending on the community investigated, thus suggesting an effect of the species pool available.  相似文献   

9.
Assemblages of large herbivores may compete for food or facilitate one another. However, small vertebrate herbivore species co-occurring with large herbivores may be affected by large herbivore grazing through changes in plant species composition, nutrient content and vegetation structure. These changes can be either positive or negative for the smaller herbivores, but this may depend on the species of small herbivores. We experimentally tested the impact of cattle grazing on habitat choice of European rabbits (Oryctolagus cuniculus) and common voles (Microtus arvalis). We excluded cattle for 7 years and measured changes in vegetation parameters, and the response of rabbits and voles. Rabbits were facilitated by cattle, whereas voles strongly preferred vegetation without cattle. The facilitation effect was stronger at low rabbit densities. Vegetation biomass and nitrogen concentration were not affected by cattle grazing, but vegetation height increased significantly where cattle were excluded. Plant species composition also changed following cattle exclusion; however, the main food plants of rabbits and voles remained abundant in each grazing treatment. We conclude that the response of both rabbits and voles predominantly reflect the differences in vegetation height in the presence and absence of cattle, but in a contrasting fashion. The difference in response between rabbits and voles may result from reduced perceived predation risk, which is lowest in high vegetation for voles, but in short vegetation for rabbits, which depend on their burrows for safety. The use of large herbivores in grassland conservation management can thus have a contrasting effect on different species of small herbivores.  相似文献   

10.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

11.

Aims

In the long term absence of catastrophic disturbance ecosystem retrogression occurs, and this is characterized by reduced soil fertility, and impairment of plant biomass and productivity. The response of plant traits to retrogression remains little explored. We investigated how changes plant traits and litter decomposability shift during retrogression for dominant trees and understory shrubs.

Methods

We characterized changes in intraspecific, interspecific and community-averaged values of plant traits and litter decomposability, for six abundant species across thirty lake islands in boreal forest that undergo retrogression with increasing time since fire.

Results

For understory shrubs, trait values and litter decomposability often changed as soil fertility declined in a manner reflective of greater conservation (versus acquisition) of nutrients, particularly at the interspecific and whole community levels. Such responses were seldom observed for trees, meaning that trees and shrubs show a decoupled response to declining soil fertility during retrogression.

Conclusions

Our results only partially agree with previous studies on temperate and subtropical retrogressive chronosequences. Because traits of only shrubs were responsive, they also highlight that impairment of belowground ecosystem processes during retrogression is primarily driven by changes in the trait spectra of understory vegetation rather than that of the trees.  相似文献   

12.
The outcome of plant–plant interactions depends on environmental (e.g. grazing and climatic conditions) and species-specific attributes (e.g. life strategy and dispersal mode of the species involved). However, the joint effects of such factors on pairwise plant–plant interactions, and how they modulate the role of these interactions at the community level, have not been addressed before. We assessed how these species-specific (life strategy and dispersal) and environmental (grazing and rainfall) factors affected the co-occurrence of 681 plant species pairs on open woodlands in south-eastern Australia. Species-specific attributes affected the co-occurrence of most species pairs, with higher co-occurrence levels dominating for drought-intolerant species. The dispersal mechanism only affected drought-tolerant beneficiaries, with more positive co-occurrences for vertebrate-dispersed species. Conversely, the percentage of facilitated species at the community scale declined under higher rainfall availabilities. A significant grazing × rainfall interaction on the percentage of facilitated species suggests that grazing-mediated protection was important under low to moderate, but not high, rainfall availabilities. This study improves our ability to predict changes in plant–plant interactions along environmental gradients, and their effect on community species richness, by highlighting that: (1) species-specific factors were more important than environmental conditions as drivers of a large amount (~37%) of the pairwise co-occurrences evaluated; (2) grazing and rainfall interaction drive the co-occurrence among different species in the studied communities, and (3) the effect of nurse plants on plant species richness will depend on the relative dominance of particular dispersal mechanisms or life strategies prone to be facilitated.  相似文献   

13.
Higher trophic level interactions are key mediators of ecosystem functioning in tropical forests. A rich body of theory has been developed to predict the effects of plant diversity on communities at higher trophic levels and the mechanisms underlying such effects. The 'enemies hypothesis’ states that predators exert more effective top–down control of herbivorous insects with increasing plant diversity. Support for this hypothesis has been found in temperate forests and agroecosystems, but remains understudied in tropical forests. We compared incidence of attacks of different natural enemies using artificial caterpillars in a tropical forest landscape and investigated the role of plant community structure (i.e. species richness, composition and density), and the role of forest fragmentation (i.e. patch size, edge distance and canopy openness) on predation intensity. Plant community effects were tested with respect to three vegetation strata: trees, saplings and herbs. Observed predation was substantially due to ants. Predation rates increased with plant species richness for trees and herbs. Density of saplings, herb cover and herb species composition were important factors for predation. No significant patterns were found for fragmentation parameters, suggesting that forest fragmentation has not altered predation intensity. We conclude that in tropical forests, top–down control of herbivorous insects in the understory vegetation is affected by a combination of plant diversity, plant species composition and structural features of the plant community.  相似文献   

14.
Mammalian grazing induces changes in vegetation properties in grasslands, which can affect a wide variety of other animals including many arthropods. However, the impacts may depend on the type and body size of these mammals. Furthermore, how mammals influence functional trait syndromes of arthropod communities is not well known. We progressively excluded large (e.g. red deer, chamois), medium (e.g. alpine marmot, mountain hare), and small (e.g. mice) mammals using size‐selective fences in two vegetation types (short‐ and tall‐grass vegetation) of subalpine grasslands. We then assessed how these exclusions affected the community composition and functional traits of ground beetles (Coleoptera, Carabidae), and which vegetation characteristic mediated the observed effects. Total carabid biomass, the activity densities of carabids with specific traits (i.e. small eyes, short wings), the richness of small‐eyed species and the richness of herbivorous species were significantly higher when certain mammals were excluded compared to when all mammals had access, regardless of vegetation type. Excluding large and medium mammals increased the activity density of herbivorous carabid species, but only in short‐grass vegetation. Similarly, excluding large mammals (ungulates) altered carabid species composition in the short‐, but not in the tall‐grass vegetation. All these responses were related to aboveground plant biomass, but not to plant Shannon diversity or vegetation structural heterogeneity. Our results indicate that changes in aboveground plant biomass are key drivers of mammalian grazers’ influence on carabids, suggesting that bottom–up forces are important in subalpine grassland systems. The exclusion of ungulates provoked the strongest carabid response. Our results, however, also highlight the ecological significance of smaller herbivorous mammals. Our study furthermore shows that mammalian grazing not only altered carabid community composition, but also caused community‐wide functional trait shifts, which could potentially have a wider impact on species interactions and ecosystem functioning.  相似文献   

15.
Grazer control of nutrient availability in the periphyton   总被引:5,自引:0,他引:5  
Summary Benthic algal assemblages are regulated by both abiotic (e.g., nutrient) and biotic (e.g., grazing) constraint. The objective of this study was to determine how changes in these two factors affected the structure of an algal assemblage in an ephemeral stream. Coverslips were incubated for 21 days in enclosures containing one of three nutrient environments (ambient, phosphorus-enriched, or phosphorus and nitrogen enriched) and one of four densities of the snail Gonibasis (0, 40, 80, or 120 snails/m2) and examined directly to enumerate the algal assemblage. The effect of grazing on algal biomass was dependent on the nutrient environment. An overstory of diatoms was susceptible to removal by grazing and was not strongly affected by nutrient enrichment. An understory of Stigeoclonium was more resistant to grazing and responded strongly to nutrient enrichment only in the presence of grazers. Snail grazers may mediate nutrient availability to the understory indirectly by removing overlying cells or by direct excretion of nutrients. Multiple interactions occur between benthic herbivores and algae, and, as shown here, some of them are positive and involve modifications of the nutrient environment.  相似文献   

16.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

17.
The ingression of woody plants into the grassy layer of savannas and grasslands has become a global concern. The increase of woody plants has been primarily attributed over grazing, fire and more recently to the increase of atmospheric CO2. We used long-term observations and analyses to assess changes in woody vegetation in Ithala Game Reserve (IGR), South Africa. Textural analysis of aerial photographs was used to detect changes in woody vegetation, from 1943 to 2007 in Ithala Game Reserve (IGR), South Africa. Daily rainfall data from 1905 to 2009 were used in a time-series analysis to determine if rainfall patterns have changed. The time-series analysis showed that the low magnitude (0–10 mm) rainfall events decreased from 1916 to 2009 and high magnitude rainfall events increased (10–20 and >20 mm). The mean annual rainfall increased from ~700 to ~850 mm from the 1930s to the 2000s. This change in rainfall was a key factor in the increase in woody vegetation from 1943 to 2009. We also used field data from the same reserve collected over 30 years to assess the increases in tree cover. Tree cover and density increased significantly by 32.5% and 657.9 indiv ha?1 respectively, over 64 years. Before the proclamation of IGR in 1972, increases in woody vegetation from 1943 were non-significant. After the proclamation of IGR, herbivore population numbers and spatial distribution influenced the accumulation of grassy biomass required to fuel fires. In areas with reduced fuel loads, the consequential suppression of fire accelerated the rate of woody plant invasion into savannas. The increase in woody vegetation coincided with a decrease in palatable (e.g. Acacia gerrardii and Acacia davyi) and an increase in unpalatable woody plants. The avoidance of the unpalatable trees (e.g. Euclea and Searsia species) by large mammalian herbivores has allowed these trees to increase in density relatively unhindered.  相似文献   

18.
Facilitative or positive interactions among species are driven mainly by the environmental amelioration or protection from grazing provided by nurse plants. Some studies have suggested that protection from grazing is inconsequential in water-limited environments because of low herbivore densities and their grazing effects. Others, however, argue that herbivores have a major effect on semi-arid plant communities, and that protection from grazing is a significant factor driving positive plant–plant interactions in such environments. We identified a gradient in grazing pressure in a semi-arid shrubland in south-eastern Australia along which we compared soil condition, incident radiation and plant composition beneath two nurse shrub species with open (shrub-free) interspaces. Our aim was to assess the degree of microclimatic amelioration provided by both shrubs, and changes in the interactions (intensity, importance and frequency) between both nurse shrubs and their understorey species, and their effects on species richness at the community level. Both the relative interaction intensity (RII) and interaction importance (Iimp) indices of plant–plant interactions were generally positive and independent of grazing pressure. Soil beneath both nurse plants had significantly greater indices of nutrient cycling and infiltration, and contained more C and N than soil in the open. Almost twice as many species occurred under the canopies of both shrubs (44 species) than in the open (23 species), and the composition of species differed significantly among microsites. Fifty-four percent of all perennial plant species occurred exclusively under shrubs. Our results suggest that environmental amelioration is a stronger driver of the facilitatory effect of shrubs on their understorey species than protection from grazing. Our conclusions are based on the fact that the substantial effect of plant–plant interactions on plant species richness was largely independent of grazing pressure. Irrespective of the underlying mechanism for this effect, our study illustrates the ecological role of shrubs as refugia for understorey plants in semi-arid environments and cautions against management practices aimed at reducing shrub populations.  相似文献   

19.
Aims Facilitation is a key process in vegetation dynamics, driving the response to natural and anthropogenic pressures. In harsh-grazed systems, palatable plants mainly survive when nested under unpalatable tussocks and shrubs. The magnitude and direction of positive interactions are driven by resource availability, extent of herbivory and type of nurse species. We hypothesized that different combinations of disturbance and environmental stress affect community composition in the dry Puna (southern Peruvian Andes) by modifying nurse types and plant interactions in magnitude and specific associations. We investigated whether different combinations of stress and disturbance influence species richness, type and frequency of occurrence of nurse and beneficiary species and magnitude and patterns of plant interactions; whether nurse species influence these interactions and target species change their interactions under different combinations of stress and disturbance and whether plant functional traits differ in the studied communities and influence the pattern of spatial interactions.Methods We selected three plant communities subject to different precipitation and management regimes: in each we laid a number of transects proportional to its extension. Data collected include species presence/absence, type of spatial interactions with nurse species and functional traits. We calculated species richness and rarefaction patterns, described the patterns of plant–plant spatial interactions and investigated the associations between nurse and other species in the three communities using indicator species analysis (ISA). We performed ISA and correlation analysis to investigate whether plant functional traits influenced facilitative interactions.Important findings We found that different combinations of stress and disturbance shaped a complex set of responses, including changes in the nurse species set. Nurse composition influenced magnitude and direction of plant interactions under different stress intensities. Heavy disturbance increased the relative importance of facilitation, even if the overall number of facilitated species decreased. Under equivalent disturbance regimes, increased abiotic stress led to a greater importance of facilitation. Different combinations of stress and disturbance affected the community assemblage also by changing the behaviour of some non-nurse species. Both heavy disturbance and strong stress led to a decrease of trait states; with certain combinations of stress and disturbance, preferential distribution of these states was observed. We also found that plant traits were of key importance in determining facilitative interactions. Some traits were mainly associated with one type of spatial interaction: plant architecture, life cycle and root type influenced the type of interaction between nurses and beneficiaries under different combinations of stress and disturbance. Our results also demonstrate that in plant interaction research the object of observations (species per se, species percentage, etc.) might influence outputs, and to effectively assess the impact of different stress and disturbance intensities on plant interactions it is necessary to work at the community level to consider the whole species pool.  相似文献   

20.
Herbivory can have deleterious effects on plant reproduction by limitation of photosynthates that are either lost by consumption, used to re-growth or invested in defences. In addition, herbivores can also exert direct impact on plant reproduction by consuming flowers. Spine length can act as an inducible defence in plants, because it tends to increase with increasing herbivore pressure. I hypothesized that almost 40 years of different habitat management (cattle exclusion within a protected area vs. cattle grazing in adjacent areas) could affect inflorescence abundance, spine length and fruit production in Prosopis flexuosa trees. The study area was located in the Central Monte desert of Argentina. I estimated differences in spine length, number of inflorescences and fruit production in trees inside the Man and Biosphere Reserve of Ñacuñán and in the adjacent cattle ranches surrounding the protected area. Inflorescence abundance in the tree canopy was similar in cattle grazed and protected sites, but the presence of large herbivores was associated with limited fruit production. Spines were 37% shorter and fruit production three times higher in trees inside the reserve than in trees in cattle ranches. A negative exponential model was used to describe the relationship between reproduction and spine length in trees. The results indicate that after almost four decades of cattle exclusion, trees inside the protected area show higher reproduction and shorter spines than cattle-browsed trees in surrounding areas. The negative association between defence and reproduction may be due to competition for photosynthates. The present results could be useful and relevant in conservation because they provide evidence on how anthropogenic habitat use can affect plant phenotypes and fitness, which in turn can affect the long-term ecological and evolutionary dynamics of plant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号