首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.  相似文献   

2.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

3.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

4.
The charge transfer kinetics between a lithium metal electrode and an inorganic solid electrolyte is of key interest to assess the rate capability of future lithium metal solid state batteries. In an in situ microelectrode study run in a scanning electron microscope, it is demonstrated that—contrary to the prevailing opinion—the intrinsic charge transfer resistance of the Li|Li6.25Al0.25La3Zr2O12 (LLZO) interface is in the order of 10?1 Ω cm2 and thus negligibly small. The corresponding high exchange current density in combination with the single ion transport mechanism (t+ ≈ 1) of the inorganic solid electrolyte enables extremely fast plating kinetics without the occurrence of transport limitations. Local plating rates in the range of several A cm?2 are demonstrated at defect free and chemically clean Li|LLZO interfaces. Practically achievable current densities are limited by lateral growth of lithium along the surface as well as electro‐chemo‐mechanical‐induced fracture of the solid electrolyte. In combination with the lithium vacancy diffusion limitation during electrodissolution, these morphological instabilities are identified as the key fundamental limitations of the lithium metal electrode for solid‐state batteries with inorganic solid electrolytes.  相似文献   

5.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   

6.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

7.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

8.
Controlling the lithium growth morphology in lithium reservoir-free cells (RFCs), so-called “anode-free” solid-state batteries, is of key interest to ensure stable battery operation. Despite several benefits of RFCs like improved energy density and easier fabrication, issues during the charging of the cell hinder the transition from lithium metal batteries with a lithium reservoir layer to RFCs. In RFCs, the lithium metal anode is plated during the first charging step at the interface between a metal current collector and the solid electrolyte, which is prone to highly heterogeneous growth instead of the desired homogeneous film-like growth. Herein, the lithium morphology during the first charging step in RFCs is explored as a function of current density and current collector thickness. Using operando scanning electron microscopy, an increase in the lithium particle density is observed with increasing current density at the Cu|Li6.25Al0.25La3Zr2O12 interface. This observation is then applied to improve the area coverage of lithium by pulsed plating. It is also shown that thin current collectors (d = 100 nm) are unsuited for RFCs, as lithium whiskers penetrate them, resulting in highly heterogeneous interfaces. This suggests the use of thicker metal layers (several µm) to mitigate whisker penetration and facilitate homogeneous lithium plating.  相似文献   

9.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium‐ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li3N particle is without dendrite nucleation. The Li3N particles create a higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li3N‐modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm?2 for more than 100 cycles. The origin of the bonding responsible for wetting of the Li3N particles by lithium and for plating through a Li3N particle is discussed.  相似文献   

10.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

11.
Solid‐state electrolytes are widely anticipated to enable the revival of high energy density and safe metallic Li batteries, however, their lower ionic conductivity at room temperature, stiff interfacial contact, and severe polarization during cycling continue to pose challenges in practical applications. Herein, a dual‐composite concept is applied to the design of a bilayer heterostructure solid electrolyte composed of Li+ conductive garnet nanowires (Li6.75La3Zr1.75Nb0.25O12)/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) as a tough matrix and modified metal organic framework particles/polyethylene oxide/PVDF‐HFP as an interfacial gel. The integral ionic conductivity of the solid electrolyte reaches 2.0 × 10?4 S cm?1 at room temperature. In addition, a chemically/electrochemically stable interface is rapidly formed, and Li dendrites are well restrained by a robust inorganic shield and matrix. As a result, steady Li plating/stripping for more than 1700 h at 0.25 mA cm?2 is achieved. Solid‐state batteries using this bilayer heterostructure solid electrolyte deliver promising battery performance (efficient capacity output and cycling stability) at ambient temperature (25 °C). Moreover, the pouch cells exhibit considerable flexibility in service and unexpected endurance under a series of extreme abuse tests including hitting with a nail, burning, immersion under water, and freezing in liquid nitrogen.  相似文献   

12.
Lithium–sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li–S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane‐based electrolytes, demonstrating significantly improved performance over the widely investigated ether‐based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation‐ion‐exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI?, and S2?) and solvents. As a result, it could invoke a quasi‐solid‐solid lithiation and enable reversible Li plating/stripping and robust solid‐electrolyte interphase chemistries. The solvation‐ion‐exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high‐energy lithium metal batteries.  相似文献   

13.
Garnet‐type solid‐state electrolytes (SSEs) have been widely studied as a promising candidate for Li metal batteries. Despite the common belief that inorganic SSEs can prevent dendrite propagation, garnet SSEs suffer from relatively low critical current density (CCD) at which the SSEs are abruptly short‐circuited by Li dendrites. In this study, the short‐circuiting mechanism of garnet Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is investigated. It is found that instead of propagating uniaxially from one electrode to other in a dendritic form, metallic lithium is formed within the SSE. This can be attributed to the fact that electrons combine with Li ions at the grain boundary, which exhibits relatively high electronic conductivity, and then reduce Li+ to Li0 to cause short circuits. In order to reduce the electronic conductivity at the grain boundary, a thin layer of LiAlO2 is coated on the grain surface of LLCZN, which results in an improved CCD value. It is also found that under higher external voltages, the electronic conductivity of SSE becomes more significant, which is believed to be the origin of CCD. These findings not only shed light on the short‐circuiting mechanism of garnet‐type SSEs but also offer a novel perspective and useful guidance on their designs and modifications.  相似文献   

14.
The application of lithium (Li) metal anodes in Li metal batteries has been hindered by growth of Li dendrites, which lead to short cycling life. Here a Li‐ion‐affinity leaky film as a protection layer is reported to promote a dendrite‐free Li metal anode. The leaky film induces electrokinetic phenomena to enhance Li‐ion transport, leading to a reduced Li‐ion concentration polarization and homogeneous Li‐ion distribution. As a result, the dendrite‐free Li metal anode during Li plating/stripping is demonstrated even at an extremely high deposition capacity (6 mAh cm?2) and current density (40 mA cm?2) with improved Coulombic efficiencies. A full cell battery with the leaky‐film protected Li metal as the anode and high‐areal‐capacity LiNi0.8Co0.1Mn0.1O2 (NCM‐811) (≈4.2 mAh cm?2) or LiFePO4 (≈3.8 mAh cm?2) as the cathode shows improved cycling stability and capacity retention, even at lean electrolyte conditions.  相似文献   

15.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

16.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

17.
Li metal is a promising anode material for all‐solid‐state batteries, owing to its high specific capacity and low electrochemical potential. However, direct contact of Li metal with most solid‐state electrolytes induces severe side reactions that can lead to dendrite formation and short circuits. Moreover, Li metal is unstable when exposed to air, leading to stringent processing requirements. Herein, it is reported that the Li3PS4/Li interface in all‐solid‐state batteries can be stabilized by an air‐stable LixSiSy protection layer that is formed in situ on the surface of Li metal through a solution‐based method. Highly stable Li cycling for over 2000 h in symmetrical cells and a lifetime of over 100 cycles can be achieved for an all‐solid‐state LiCoO2/Li3PS4/Li cell. Synchrotron‐based high energy X‐ray photoelectron spectroscopy in‐depth analysis demonstrates the distribution of different components within the protection layer. The in situ formation of an electronically insulating LixSiSy protection layer with highly ionic conductivity provides an effective way to prevent Li dendrite formation in high‐energy all‐solid‐state Li metal batteries.  相似文献   

18.
Safety, nontoxicity, and durability directly determine the applicability of the essential characteristics of the lithium (Li)‐ion battery. Particularly, for the lithium–sulfur battery, due to the low ignition temperature of sulfur, metal lithium as the anode material, and the use of flammable organic electrolytes, addressing security problems is of increased difficulty. In the past few years, two basic electrolyte systems are studied extensively to solve the notorious safety issues. One system is the conventional organic liquid electrolyte, and the other is the inorganic solid‐state or quasi‐solid‐state composite electrolyte. Here, the recent development of engineered liquid electrolytes and design considerations for solid electrolytes in tackling these safety issues are reviewed to ensure the safety of electrolyte systems between sulfur cathode materials and the lithium‐metal anode. Specifically, strategies for designing and modifying liquid electrolytes including introducing gas evolution, flame, aqueous, and dendrite‐free electrolytes are proposed. Moreover, the considerations involving a high‐performance Li+ conductor, air‐stable Li+ conductors, and stable interface performance between the sulfur cathode and the lithium anode for developing all‐solid‐state electrolytes are discussed. In the end, an outlook for future directions to offer reliable electrolyte systems is presented for the development of commercially viable lithium–sulfur batteries.  相似文献   

19.
Uncontrolled dendrites resulting from nonuniform lithium (Li) nucleation/growth and Li volume expansion during charging cause serious safety problems for Li anode‐based batteries. Here the coating of nickel foam with graphitic carbon nitride (g‐C3N4) to have a 3D current collector (g‐C3N4@Ni foam) for dendrite‐free Li metal anodes is reported. The lithiophilic g‐C3N4 coupled with the 3D framework is demonstrated to be highly effective for promoting the uniform deposition of Li and suppressing the formation of dendrites. Both density functional theory calculations and experimental studies indicate the formation of a micro‐electric field resulting from the tri‐s‐triazine units of g‐C3N4, which induces numerous Li nuclei during the initial nucleation stage, effectively guiding the following Li growth on the 3D Ni foam to be well distributed. Furthermore, the 3D porous framework is favorable for absorbing any volume change and stabilizing the solid–electrolyte interphase layer during repeated Li plating/stripping. As such, a Li metal anode based on the g‐C3N4@Ni foam has a remarkable electrochemical performance with a high Coulombic efficiency (98% retention after 300 cycles), an ultralong lifespan up to 900 h, as well as a low overpotential (<15 mV at 1.0 mA cm?2) at a Li deposition of 9.0 mA h cm?2.  相似文献   

20.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号