首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

3.
Metal oxide cathode coatings are capable of scavenging the hydrofluoric acid (HF) (present in LiPF6‐based electrolytes) and improving the electrochemical performance of Li‐ion batteries. Here, a first‐principles thermodynamic framework is introduced for designing cathode coatings that consists of four elements: i) HF‐scavenging enthalpies, ii) volumetric and iii) gravimetric HF‐scavenging capacities of the oxides, and iv) cyclable Li loss into coating components. 81 HF‐scavenging reactions involving binary s‐, p‐ and d‐block metal oxides and fluorides are enumerated and these materials are screened to find promising coatings based on attributes (i‐iv). The screen successfully produces known effective coating materials (e.g., Al2O3 and MgO), providing a validation of our framework. Using this design strategy, promising coating materials, such as trivalent oxides of d‐block transition metals Sc, Ti, V, Cr, Mn and Y, are predicted. Finally, a new protection mechanism that successful coating materials could provide by scavenging the wide bandgap and low Li ion conductivity LiF precipitates from the cathode surfaces is suggested.  相似文献   

4.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

5.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

6.
7.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   

8.
Herein, it is proposed that poly(methylmethacrylate) (PMMA), a widely‐used thermoplastic in our daily life, can be used as an abundant, stable, and high‐performance anode material for rechargeable lithium‐ion batteries through a novel concept of lithium storage mechanism. The specially‐designed PMMA thin‐film electrode exhibits a high reversible capacity of 343 mA h g?1 at C/25 and maintains a capacity retention of 82.6% of that obtained at C/25 when cycled at 1 C rate. Meanwhile, this pristine PMMA electrode without binder and conductive agents shows a high reversible capacity of 196.8 mA h g?1 after 150 cycles at 0.2 C with a capacity retention of 73.5%. Additionally, PMMA‐based binder is found to enhance both the reversible capacity and rate capability of the graphite electrodes. Hence, this new type of organic electrode material may have a great opportunity to be utilized as the active material or rechargeable binder in flexible or transparent thin‐film batteries and all‐solid batteries. The present work also provides a new way of seeking more proper organic electrode materials which don't contain conjugated structures and atoms with lone pair electrons required in traditional organic electrode materials.  相似文献   

9.
10.
Although potassium‐ion batteries (KIBs) have been considered to be promising alternatives to conventional lithium‐ion batteries due to large abundance and low cost of potassium resources, their development still stays at the infancy stage due to the lack of appropriate cathode and anode materials with reversible potassium insertion/extraction as well as good rate and cycling performance. Herein, a novel dual‐carbon battery based on a potassium‐ion electrolyte (named as K‐DCB), utilizing expanded graphite as cathode material and mesocarbon microbead as anode material is developed. The working mechanism of the K‐DCB is investigated, which is further demonstrated to deliver a high reversible capacity of 61 mA h g‐1 at a current density of 1C over a voltage window of 3.0–5.2 V, as well as good cycling performance with negligible capacity decay after 100 cycles. Moreover, the high working voltage with medium discharge voltage of 4.5 V also enables the K‐DCB to meet the requirement of some high‐voltage devices. With the merits of environmental friendliness, low cost and high energy density, the K‐DCB shows attractive potential for future energy storage application.  相似文献   

11.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

12.
An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium‐ion (Li‐ion) storage performance is derived for the first time through hydrolysis and thermal self‐assembly of the solid alkoxide precursor. Mesoporous anodes composed of these ≈9 nm‐sized SnO2 particles exhibit substantially higher specific capacities, rate performance, coulombic efficiency, and cycling stabilities compared with disordered nanoparticles and commercial SnO2. A discharge capacity of 778 mAh g–1, which is very close to the theoretical limit of 781 mAh g–1, is achieved at a current density of 0.1 C. Even at high rates of 2 C (1.5 A g–1) and 6 C (4.7 A g–1), these ordered SnO2 nanoparticles retain stable specific capacities of 430 and 300 mAh g–1, respectively, after 100 cycles. Interconnection between individual nanoparticles and structural integrity of the SnO2 electrodes are preserved through numerous charge–discharge process cycles. The significantly better electrochemical performance of ordered SnO2 nanoparticles with a tap density of 1.60 g cm–3 is attributed to the superior electrode/electrolyte contact, Li‐ion diffusion, absence of particle agglomeration, and improved strain relaxation (due to tiny space available for the local expansion). This comprehensive study demonstrates the necessity of mesoporosity and interconnection between individual nanoparticles for improving the Li‐ion storage electrochemical performance of SnO2 anodes.  相似文献   

13.
Vanadium pentoxide (V2O5) has played important roles in lithium‐ion batteries due to its unique crystalline structure. To assist researchers understanding the roles this material plays, a comprehensive and critical review is conducted based on about 250 publications. Here, we report basics and applications of micro‐ and nano‐materials of V2O5 and V2O5‐based composites. The comparative and statistical analysis leads to the discovery of several interesting phenomena. The V2O5 electrodes with two lithium ions have a favorable capacity performance with reversible phase formation. The excellent capacity retention is displayed in the V2O5 electrodes with one lithium ion inserted. In the case of three lithium ions insertion, it was found that the irreversible formation of the phase ω in LixV2O5 leads to its control. In addition, effects of additives on electrode performance, circuitry models of performance, as well as reaction routes are studied. Two unprecedented concepts of the “high capacity band” and “empirical total capacity retention” are proposed though the comprehensive statistical analysis of the reviewed data. This review provides a comprehensive collection of information of state‐of‐the‐art and recent advancement in V2O5 and V2O5‐based composite materials for electrodes. Researchers could use the information to design and develop advanced electrodes for future batteries.  相似文献   

14.
15.
Since their successful commercialization in 1990s, lithium‐ion batteries (LIBs) have been widely applied in portable digital products. The energy density and power density of LIBs are inadequate, however, to satisfy the continuous growth in demand. Considering the cost distribution in battery system, it is essential to explore cathode/anode materials with excellent rate capability and long cycle life. Nanometer‐sized electrode materials could quickly take up and store numerous Li+ ions, afforded by short diffusion channels and large surface area. Unfortunately, low thermodynamic stability of nanoparticles results in electrochemical agglomeration and raises the risk of side reactions on electrolyte. Thus, micro/nano and hetero/hierarchical structures, characterized by ordered assembly of different sizes, phases, and/or pores, have been developed, which enable us to effectively improve the utilization, reaction kinetics, and structural stability of electrode materials. This review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail. Multidimensional self‐assembled structures can achieve integration of the advantages of materials with different sizes. Core/yolk–shell structures provide synergistic effects between the shell and the core/yolk. Porous structures with macro‐, meso‐, and micropores can accommodate volume expansion and facilitate electrolyte infiltration.  相似文献   

16.
Phosphorus‐based materials are promising for high‐performance lithium‐ion battery (LIB) applications due to their high theoretical specific capacity. Currently, the existing physical methods render great difficulty toward rational engineering on the nanostructural phosphorus or its composites, thus limiting its high‐rate LIB applications. For the first time, a sublimation‐induced synthesis of phosphorus‐based composite nanosheets by a chemistry‐based solvothermal reaction is reported. Its formation mechanism involves solid–vapor–solid transformation driven by continuous vaporization–condensation process, as well as subsequent bottom‐up assembly growth. The proof‐of‐concept LIBs composed of the phosphorus‐based nanosheets achieve a high capacity of 630 mAh g?1 at an ultrahigh current density of 20 A g?1, which is attributed to efficient lithium‐ion diffusion and electron transfer. Such simple sublimation‐induced transformation opens up new prospects for rational engineering of phosphorus‐based materials for enhancing electrochemical performance.  相似文献   

17.
Potassium‐ion batteries (KIBs) are very promising alternatives to lithium‐ion batteries (LIBs) for large‐scale energy storage. However, traditional carbon anode materials usually show poor performance in KIBs due to the large size of K ions. Herein, a carbonization‐etching strategy is reported for making a class of sulfur (S) and oxygen (O) codoped porous hard carbon microspheres (PCMs) material as a novel anode for KIBs through pyrolysis of the polymer microspheres (PMs) composed of a liquid crystal/epoxy monomer/thiol hardener system. The as‐made PCMs possess a porous architecture with a large Brunauer–Emmett–Teller surface area (983.2 m2 g?1), an enlarged interlayer distance (0.393 nm), structural defects induced by the S/O codoping and also amorphous carbon nature. These new features are important for boosting potassium ion storage, allowing the PCMs to deliver a high potassiation capacity of 226.6 mA h g?1 at 50 mA g?1 over 100 cycles and be displaying high stability by showing a potassiation capacity of 108.4 mA h g?1 over 2000 cycles at 1000 mA g?1. The density functional theory calculations demonstrate that S/O codoping not only favors the adsorption of K to the PCMs electrode but also reduces its structural deformation during the potassiation/depotassiation. The present work highlights the important role of hierarchical porosity and S/O codoping in potassium storage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号