首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ataxia telangiectasia mutated (ATM) protein kinase plays a central role in the cellular response to DNA damage. Loss or inactivation of both copies of the ATM gene (ATM) leads to ataxia telangiectasia, a devastating childhood condition characterized by neurodegeneration, immune deficiencies, and cancer predisposition. ATM is also absent in approximately 40% of mantle cell lymphomas (MCLs), and we previously showed that MCL cell lines with loss of ATM are sensitive to poly-ADP ribose polymerase (PARP) inhibitors. Next-generation sequencing of patient tumors has revealed that ATM is altered in many human cancers including colorectal, lung, prostate, and breast. Here, we show that the colorectal cancer cell line SK-CO-1 lacks detectable ATM protein expression and is sensitive to the PARP inhibitor olaparib. Similarly, HCT116 colorectal cancer cells with shRNA depletion of ATM are sensitive to olaparib, and depletion of p53 enhances this sensitivity. Moreover, HCT116 cells are sensitive to olaparib in combination with the ATM inhibitor KU55933, and sensitivity is enhanced by deletion of p53. Together our studies suggest that PARP inhibitors may have potential for treating colorectal cancer with ATM dysfunction and/or colorectal cancer with mutation of p53 when combined with an ATM kinase inhibitor.  相似文献   

2.
3.
ATM, the gene mutated in ataxia telangiectasia, is a protein essential for handling DNA strand breaks. We recently isolated the Xenopus homologue of ATM, X-ATM and we report here the detailed expression pattern of the protein and the mRNA during early Xenopus development. During the cleavage stages, ATM protein was concentrated in and around the nuclei of all cells with low levels of expression also detected in the cytoplasm. Following neurulation, increased protein levels were detected in the nuclei of developing somites and in the central nervous system. Areas of high protein expression correlated with areas of increased mRNA expression which was detected in the nuclei of somites and the developing lens. Received: 2 December 1999 / Accepted: 4 February 2000  相似文献   

4.
The genetic determinants for most breast cancer cases remain elusive. Whilst mutations in BRCA1 and BRCA2 significantly contribute to familial breast cancer risk, their contribution to sporadic breast cancer is low. In such cases genes frequently altered in the general population, such as the gene mutated in Ataxia telangiectasia (AT), ATM may be important risk factors. The initial interest in studying ATM heterozygosity in breast cancer arose from the findings of epidemiological studies of AT families in which AT heterozygote women had an increased risk of breast cancer and estimations that 1% of the population are AT heterozygotes. One of the clinical features of AT patients is extreme cellular sensitivity to ionising radiation. This observation, together with the finding that a significant proportion of breast cancer patients show an exaggerated acute or late normal tissue reactions after radiotherapy, has lead to the suggestion that AT heterozygosity plays a role in radiosensitivity and breast cancer development. Loss of heterozygosity in the region of the ATM gene on chromosome 11, has been found in about 40% of sporadic breast tumours. However, screening for ATM mutations in sporadic breast cancer cases, showing or not adverse effects to radiotherapy, has not revealed the magnitude of involvement of the ATM gene expected. Their size and the use of the protein truncation test to identify mutations limit many of these studies. This latter parameter is critical as the profile of mutations in AT patients may not be representative of the ATM mutations in other diseases. The potential role of rare sequence variants within the ATM gene, sometimes reported as polymorphisms, also needs to be fully assessed in larger cohorts of breast cancer patients and controls in order to determine whether they represent cancer and/or radiation sensitivity predisposing mutations.  相似文献   

5.
Biallelic mutations in ataxiatelangiectasia mutated (ATM), which encodes for a protein kinase, cause ataxia telangiectasia (A–T). A–T is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation (IR). A–T patients typically lack both detectable ATM protein and ATM kinase activity, and small molecule inhibitors of ATM kinase activity have been developed as strategies to improve radiotherapy for the treatment of cancers. As predicted, inhibition of ATM kinase activity is sufficient to radiosensitize cells. However, we recently showed that inhibition of ATM kinase activity disrupts DNA damage-induced sister chromatid exchange (SCE). This result was unanticipated since SCE is normal in A–T cells that lack detectable ATM protein. In these studies, we showed, for the first time, that the consequences of inhibition of ATM kinase activity and adaptation to ATM protein disruption are distinct. Here, we discuss the mechanistic implications of this finding for the function of ATM at the replication fork and the clinical utility of ATM kinase inhibitors.Key words: ataxia telangiectasia, ATM, KU55933, KU60019, double-strand break repair, homologous recombination, sister chromatid exchange  相似文献   

6.
Approximately 0.5%-1% of the general population has been estimated to be heterozygous for a germline mutation in the ATM gene. Mutations in the ATM gene are responsible for the autosomal recessive disorder ataxia-telangiectasia (A-T) (MIM 208900). The finding that ATM-heterozygotes have an increased relative risk for breast cancer was supported by some studies but not confirmed by others. In view of this discrepancy, we examined the frequency of ATM germline mutations in a selected group of Dutch patients with breast cancer. We have analyzed ATM germline mutations in normal blood lymphocytes, using the protein-truncation test followed by genomic-sequence analysis. A high percentage of ATM germline mutations was demonstrated among patients with sporadic breast cancer. The 82 patients included in this study had developed breast cancer at age <45 and had survived >/=5 years (mean 15 years), and in 33 (40%) of the patients a contralateral breast tumor had been diagnosed. Among these patients we identified seven (8.5%) ATM germline mutations, of which five are distinct. One splice-site mutation (IVS10-6T-->G) was detected three times in our series. Four heterozygous carriers were patients with bilateral breast cancer. Our results indicate that the mutations identified in this study are "A-T disease-causing" mutations that might be associated with an increased risk of breast cancer in heterozygotes. We conclude that ATM heterozygotes have an approximately ninefold-increased risk of developing a type of breast cancer characterized by frequent bilateral occurrence, early age at onset, and long-term survival. The specific characteristics of our population of patients may explain why such a high frequency was not found in other series.  相似文献   

7.
The defining characteristic of recessive disorders is the absence of disease in heterozygous carriers of the mutant alleles. However, it has been recognized that recessive carriers may differ from noncarriers in some phenotypes. Here, we studied ataxia telangiectasia (AT), a classical recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. We compared the gene and microRNA expression phenotypes of noncarriers, AT carriers who have one copy of the ATM mutations, and AT patients with two copies of ATM mutations. We found that some phenotypes are more similar between noncarriers and AT carriers compared to AT patients, as expected for a recessive disorder. However, for some expression phenotypes, AT carriers are more similar to the patients than to the noncarriers. Analysis of one of these expression phenotypes, TNFSF4 level, allowed us to uncover a regulatory pathway where ATM regulates TNFSF4 expression through MIRN125B (also known as miR-125b or miR125b) [corrected] In AT carriers and AT patients, this pathway is disrupted. As a result, the level of MIRN125B is lower and the level of its target gene, TNFSF4, is higher than in noncarriers. A decreased level of MIRN125B is associated with breast cancer, and an elevated level of TNFSF4 is associated with atherosclerosis. Thus, our findings provide a mechanistic suggestion for the increased risk of breast cancer and heart disease in AT carriers. By integrating molecular and computational analyses of gene and microRNA expression, we show the complex consequences of a human gene mutation.  相似文献   

8.
Ataxia telangiectasia mutated (ATM) is activated upon DNA double strand breaks (DSBs) and phosphorylates numerous DSB response proteins, including histone H2AX on serine 139 (Ser-139) to form γ-H2AX. Through interaction with MDC1, γ-H2AX promotes DSB repair by homologous recombination (HR). H2AX Ser-139 can also be phosphorylated by DNA-dependent protein kinase catalytic subunit and ataxia telangiectasia- and Rad3-related kinase. Thus, we tested whether ATM functions in HR, particularly that controlled by γ-H2AX, by comparing HR occurring at the euchromatic ROSA26 locus between mouse embryonic stem cells lacking either ATM, H2AX, or both. We show here that loss of ATM does not impair HR, including H2AX-dependent HR, but confers sensitivity to inhibition of poly(ADP-ribose) polymerases. Loss of ATM or H2AX has independent contributions to cellular sensitivity to ionizing radiation. The ATM-independent HR function of H2AX requires both Ser-139 phosphorylation and γ-H2AX/MDC1 interaction. Our data suggest that ATM is dispensable for HR, including that controlled by H2AX, in the context of euchromatin, excluding the implication of such an HR function in genomic instability, hypersensitivity to DNA damage, and poly(ADP-ribose) polymerase inhibition associated with ATM deficiency.  相似文献   

9.
Ataxia-telangiectasia mutated (ATM) is a Ser/Thr protein kinase that plays a critical role in DNA damage-induced signaling and initiation of cell cycle checkpoint signaling in response to DNA-damaging agents such as ionizing radiation. We have previously reported the ATM protein loss by immunohistochemistry (IHC) in 16% of human gastric cancer (GC) tissue. We hypothesized that ATM gene intron mutations targeted by microsatellite instability (MSI) cause ATM protein loss in a subset of GC. We studied mononucleotide mutations at the intron of ATM gene, ATM IHC and MSI in GC. Ten human gastric cancer cell lines were studied for the ATM gene mutation at introns, RT-PCR, direct sequencing, and immunohistochemistry. GC tissues of 839 patients were analyzed for MSI and ATM IHC. Among them, 604 cases were analyzed for the ATM mutations at introns preceding exon 6, exon 10 and exon 20. Two human GC cell lines (SNU-1 and -638) showed ATM intron mutations, deletion in RT-PCR and direct sequencing, and ATM protein loss by IHC. The frequencies of ATM mutation, MSI, and ATM protein loss were 12.9% (78/604), 9.2% (81/882) and 15.2% (134/839), respectively. Analysis of associations among MSI, ATM gene mutation, and ATM protein loss revealed highly co-existing ATM gene alterations and MSI. ATM intron mutation and ATM protein loss were detected in 69.3% (52/75) and 53.3% (40/75) of MSI positive GC. MSI positivity and ATM protein loss were present in 68.4% (52/76) and 48.7% (37/76) of GC with ATM intron mutation. ATM mutation and ATM protein loss had characteristics of old age, distal location of tumor, large tumor size, and histologic intestinal type. Our study might be interpreted as that ATM gene mutation at intron might be targeted by MSI and lead to ATM protein loss in a selected group of GC.  相似文献   

10.
Angèle S  Hall J 《Mutation research》2000,462(2-3):167-178
The genetic determinants for most breast cancer cases remain elusive. Whilst mutations in BRCA1 and BRCA2 significantly contribute to familial breast cancer risk, their contribution to sporadic breast cancer is low. In such cases genes frequently altered in the general population, such as the gene mutated in Ataxia telangiectasia (AT), ATM may be important risk factors. The initial interest in studying ATM heterozygosity in breast cancer arose from the findings of epidemiological studies of AT families in which AT heterozygote women had an increased risk of breast cancer and estimations that 1% of the population are AT heterozygotes. One of the clinical features of AT patients is extreme cellular sensitivity to ionising radiation. This observation, together with the finding that a significant proportion of breast cancer patients show an exaggerated acute or late normal tissue reactions after radiotherapy, has lead to the suggestion that AT heterozygosity plays a role in radiosensitivity and breast cancer development. Loss of heterozygosity in the region of the ATM gene on chromosome 11, has been found in about 40% of sporadic breast tumours. However, screening for ATM mutations in sporadic breast cancer cases, showing or not adverse effects to radiotherapy, has not revealed the magnitude of involvement of the ATM gene expected. Their size and the use of the protein truncation test to identify mutations limit many of these studies. This latter parameter is critical as the profile of mutations in AT patients may not be representative of the ATM mutations in other diseases. The potential role of rare sequence variants within the ATM gene, sometimes reported as polymorphisms, also needs to be fully assessed in larger cohorts of breast cancer patients and controls in order to determine whether they represent cancer and/or radiation sensitivity predisposing mutations.  相似文献   

11.
12.
《Autophagy》2013,9(5):840-841
The various pathologies in ataxia telangiectasia (A-T) patients including T-cell lymphomagenesis have been attributed to defects in the DNA damage response pathway because ATM, the gene mutated in this disease, is a key mediator of this process. Analysis of Atm-deficient thymocytes in mice reveals that the absence of this gene results in altered mitochondrial homeostasis, a phenomenon that appears to result from abnormal mitophagy engagement. Interestingly, allelic loss of the autophagic gene Becn1 delays tumorigenesis in Atm-null mice presumably by reversing the mitochondrial abnormalities and not by improving the DNA damage response (DDR) pathway. Thus, ATM plays a critical role in modulating mitochondrial homeostasis perhaps by regulating mitophagy.  相似文献   

13.
Endoplasmic reticulum stress (ER-stress) is associated with ataxia telangiectasia mutated (ATM) gene. We present here conclusive data showing that ATM blocks ER-stress induced by tunicamycin or ionizing radiation (IR). X-box protein-1 (XBP-1) splicing, GRP78 expression and caspase-12 activation were increased by tunicamycin or IR in Atm-deficient AT5BIVA fibroblasts. Activation of caspase-12 and caspase-3 by tunicamycin was significantly reduced in cells transfected with wild-type Atm (AT5BIVA/wtATM). Atm knockdown by siRNA, however, noticeably elevated ER-stress and chemosensitivity to tunicamycin. In summary, we present substantial data demonstrating that ATM blocks the ER stress signaling associated with cancer cell proliferation.  相似文献   

14.

Purpose

This study sought to assess the prevalence of common germline mutations in several genes engaged in the repair of DNA double-strand break by homologous recombination in patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers. Tumors deficient in this type of DNA damage repair are known to be especially sensitive to DNA cross-linking agents (e.g., platinum drugs) and to poly(ADP-ribose) polymerase (PARP) inhibitors.

Methods

Genetic testing was performed for 36 common germline mutations in genes engaged in the repair of DNA by homologous recombination, i.e., BRCA1, BRCA2, CHEK2, NBN, ATM, PALB2, BARD1, and RAD51D, in 202 consecutive patients with triple-negative breast cancers and hereditary non-triple-negative breast cancers.

Results

Thirty five (22.2%) of 158 patients in the triple-negative group carried mutations in genes involved in DNA repair by homologous recombination, while 10 (22.7%) of the 44 patients in the hereditary non-triple-negative group carried such mutations. Mutations in BRCA1 were most frequent in patients with triple-negative breast cancer (18.4%), and mutations in CHEK2 were most frequent in patients with hereditary non-triple-negative breast cancers (15.9%). In addition, in the triple-negative group, mutations in CHEK2, NBN, and ATM (3.8% combined) were found, while mutations in BRCA1, NBN, and PALB2 (6.8% combined) were identified in the hereditary non-triple-negative group.

Conclusions

Identifying mutations in genes engaged in DNA damage repair by homologous recombination other than BRCA1/2 can substantially increase the proportion of patients with triple-negative breast cancer and hereditary non-triple-negative breast cancer who may be eligible for therapy using PARP inhibitors and platinum drugs.  相似文献   

15.
In this study, the effects of cytokines on the activation of the DNA double strand break repair factors histone H2AX (H2AX) and ataxia telangiectasia mutated (ATM) were examined in pancreatic β cells. We show that cytokines stimulate H2AX phosphorylation (γH2AX formation) in rat islets and insulinoma cells in a nitric oxide- and ATM-dependent manner. In contrast to the well documented role of ATM in DNA repair, ATM does not appear to participate in the repair of nitric oxide-induced DNA damage. Instead, nitric oxide-induced γH2AX formation correlates temporally with the onset of irreversible DNA damage and the induction of apoptosis. Furthermore, inhibition of ATM attenuates cytokine-induced caspase activation. These findings show that the formation of DNA double strand breaks correlates with ATM activation, irreversible DNA damage, and ATM-dependent induction of apoptosis in cytokine-treated β cells.  相似文献   

16.
BackgroundATM plays an important role in response to DNA damage, while the roles of ATM in radiation-induced autophagy are still unclear in cervical cancer cells.MethodsHuman cervical cancer cells, Hela, were used, and cell models with ATM?/? and MAPK14?/? were established by gene engineering. Western blot was implemented to detect protein expression. MDC staining and GFP-LC3 relocalization were used to detect autophagy. CCK-8 was used to detect cell viability. Radiosensitivity was analyzed by colony formation assays. Co-immunoprecipitation was used to detect the interaction between different proteins, and apoptosis was detected by flow cytometry.ResultsAfter radiation autophagy was induced, illustrated by the increase of MAPLC3-II/MAPLC3-I ratio and decrease of p62, and phosphorylation of ATM simultaneously increased. ATM?/? cells displayed hypersensitivity but had no influence on IR-induced apoptosis. Then inhibitor of ATM, KU55933, ATM and MAPK14 silencing were used, and autophagy was induced by IR more than 200% in control, and only by 35.72%, 53.18% and 24.76% in KU55933-treated cells, ATM?/? and MAPK14?/? cells, respectively. KU55933 inhibited IR-induced autophagy by activating mTOR pathways. ATM silencing decreased the expression of MAPK14 and mTOR signals significantly. Beclin's bond to PI3KIII and their interaction increased after IR, while in ATM?/? and MAPK14?/? cells this interaction decreased after IR. Both ATM and MAPK14 interacted with Beclin, while ATM?/? and MAPK14?/? cells showed no interaction.ConclusionsATM could promote IR-induced autophagy via the MAPK14 pathway, the mTOR pathway, and Beclin/PI3KIII complexes, which contributed to the effect of ATM on radiosensitivity.  相似文献   

17.
18.

Background

Although inherited breast cancer has been associated with germline mutations in genes that are functionally involved in the DNA homologous recombination repair (HRR) pathway, including BRCA1, BRCA2, TP53, ATM, BRIP1, CHEK2 and PALB2, about 70% of breast cancer heritability remains unexplained. Because of their critical functions in maintaining genome integrity and already well-established associations with breast cancer susceptibility, it is likely that additional genes involved in the HRR pathway harbor sequence variants associated with increased risk of breast cancer. RAD51 plays a central biological function in DNA repair and despite the fact that rare, likely dysfunctional variants in three of its five paralogs, RAD51C, RAD51D, and XRCC2, have been associated with breast and/or ovarian cancer risk, no population-based case-control mutation screening data are available for the RAD51 gene. We thus postulated that RAD51 could harbor rare germline mutations that confer increased risk of breast cancer.

Methodology/Principal Findings

We screened the coding exons and proximal splice junction regions of the gene for germline sequence variation in 1,330 early-onset breast cancer cases and 1,123 controls from the Breast Cancer Family Registry, using the same population-based sampling and analytical strategy that we developed for assessment of rare sequence variants in ATM and CHEK2. In total, 12 distinct very rare or private variants were characterized in RAD51, with 10 cases (0.75%) and 9 controls (0.80%) carrying such a variant. Variants were either likely neutral missense substitutions (3), silent substitutions (4) or non-coding substitutions (5) that were predicted to have little effect on efficiency of the splicing machinery.

Conclusion

Altogether, our data suggest that RAD51 tolerates so little dysfunctional sequence variation that rare variants in the gene contribute little, if anything, to breast cancer susceptibility.  相似文献   

19.
20.
在电离辐射等因素造成的DNA损伤修复信号传导过程中,共济失调毛细血管扩张症突变基因(ATM)起关键作用。同时,ATM属于P13K家族成员,其功能与保持端粒长度有关。端粒是真核细胞内染色体末端的重复的DNA序列,端粒的长短和稳定性决定了细胞的寿命。ATM突变导致端粒的不稳定性,包括端粒连接、端粒染色质结构变化,影响端粒聚集等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号