首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994, Curr. Biol. 4:277-280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's "flying DNA" hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the "flying DNA" hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

2.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994,Curr. Biol.4:277–280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's “flying DNA” hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the “flying DNA” hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

3.
MicroRNAs are small, highly conserved non-coding RNA molecules involved in the regulation of gene expression. MicroRNAs are transcribed by RNA polymerases II and III, generating precursors that undergo a series of cleavage events to form mature microRNA. The conventional biogenesis pathway consists of two cleavage events, one nuclear and one cytoplasmic. However, alternative biogenesis pathways exist that differ in the number of cleavage events and enzymes responsible. How microRNA precursors are sorted to the different pathways is unclear but appears to be determined by the site of origin of the microRNA, its sequence and thermodynamic stability. The regulatory functions of microRNAs are accomplished through the RNA-induced silencing complex (RISC). MicroRNA assembles into RISC, activating the complex to target messenger RNA (mRNA) specified by the microRNA. Various RISC assembly models have been proposed and research continues to explore the mechanism(s) of RISC loading and activation. The degree and nature of the complementarity between the microRNA and target determine the gene silencing mechanism, slicer-dependent mRNA degradation or slicer-independent translation inhibition. Recent evidence indicates that P-bodies are essential for microRNA-mediated gene silencing and that RISC assembly and silencing occurs primarily within P-bodies. The P-body model outlines microRNA sorting and shuttling between specialized P-body compartments that house enzymes required for slicer -dependent and -independent silencing, addressing the reversibility of these silencing mechanisms. Detailed knowledge of the microRNA pathways is essential for understanding their physiological role and the implications associated with dysfunction and dysregulation.  相似文献   

4.
Drinking water distribution networks are known to harbor microbial biofilms. The aim of the present work is to (i) identify the culturable bacteria presented in the drinking-water distribution network, (ii) investigate the ability of isolated bacteria to form biofilm under some environmental stress conditions and some eliminating or removing treatments. To achieve it, 57 strains were isolated from biofilm (43 isolates) and water samples (14 isolates) collected from five stations in drinking-water distribution network in Taif city, Kingdom of Saudi Arabia (KSA). Partial sequences of 16S rRNA gene in the 57 isolates ensured the presence of only 22 different strains in biofilm samples. Among these strains, only 14 strains were also detected in water samples. Gram-negative Aeromonas hydrophila was the most occurred bacterium in the microbial biofilm obtained from the purified-water storage tanks followed by Gram-negative Pseudomonas sp. Gram-positive Bacillus subtilis was the most occurred bacterium in the microbial biofilm collected from the ends of the distribution pipes. Among the 22 isolated strains, 13 strains were strong biofilm producers at 30 and 37°C. The effects of environmental stresses including nutrient starvation (diluted TSB, 20:1), heating (100°C for 10 min), UV-treatment (240 nm for 10 min) and dynamic incubation (150 rpm min?1) on the formation of biofilm were also investigated. These conditions affected the biofilm formation ability of the isolated strains at different levels. Nutrient starvation enhanced biofilm formation by most of the isolates. Among some biofilm deforming treatments, SDS and trypsin had considerable effects on preventing biofilm formation by most of the isolated strains. In conclusion, the results of the present work indicated that not all biofilm strains released from biofilm to the drinking water. Also, not all biofilm strains were able to form biofilm. Most of isolated bacteria had ability to form biofilm at suboptimum temperature of growth. These results may provide basic information on formation of microbial biofilms and overcome the problem of deteriorating of water quality in the drinking-water distribution networks.  相似文献   

5.
6.
Macroecology depends heavily on a comparative methodology in order to identify large-scale patterns and to test alternative hypotheses that might generate such patterns. With the advent and accessibility of large electronic databases of species and their life history and ecological attributes, ecologists have begun seeking generalities, and examining large-scale ecological hypotheses involving core themes of range, abundance and diversity. For example, combinations of ecological, life history and phylogenetic data have been analysed using large species sets to test hypotheses in invasion biology. Analysis of regional species inventories can contribute cogently to our understanding of invasions. Here we examine several ways in which database analysis is effective. We review 19 studies of comparative invasions biology, each using >100 species of plants in their analyses, and show that invader success is linked to seven correlates: short life cycle, abiotic (mostly wind) dispersal, large native range size, non-random taxonomic patterns (emphasizing certain families or orders), presence of clonal organs, occupying disturbed habitats, and earlier time of introduction. These phylogenetically influenced, comparative analyses using regional species inventories are only just beginning and have much potential.  相似文献   

7.
The incorporation of [35S]sulfate into the soluble proteins of chromaffin granules was studied. Isolated bovine chromaffin cells were pulse-labeled with [35S]sulfate. The radioactively labeled products were characterized by one- and two-dimensional electrophoresis. Three proteins of chromaffin granules were preferentially labeled. One was identified by immunoprecipitation as chromogranin B (Mr 100,000). This result explains why during cellular synthesis the chromogranin B precursor is converted into a significantly more acidic protein. During chase periods, the newly synthesized chromogranin B was progressively degraded by endogenous proteases. A second labeled protein, much less labeled than chromogranin B, was identified as chromogranin A. The largest portion of the radioactive label was found in a heterogeneous component (Mr 86,000-100,000; pI 4.3-5.0). Digestion experiments with chondroitinase ABC demonstrated that this labeled component and a comigrating Coomassie Blue-stained spot were selectively degraded by this enzyme. This establishes that this component is a proteoglycan.  相似文献   

8.
Though many modern techniques are available for studying brains, they are difficult to use in evolutionary contexts that require examination of large numbers of specimens and species, and all major parts of the brain. Thus, evolutionary studies of many species and of whole brains still tend to be based upon simpler data such as sizes of brains and brain components. Such investigations, carried out over many decades, have usually employed univariate and bivariate analyses, though a few investigators used early multivariate methods. In mammals, these studies generally show the primacy of the relationship between brain and brain-part sizes with overall body size. More recent multivariate applications have confirmed this (Finlay, B. L., and Darlington, R. B. (1995). Science 268: 1578–1584) and some have also separated the highest level phylogenetic groups: strepsirrhines and haplorrhines (Barton, R. A., and Harvey, P. H. (2000). Nature 405: 1055–1058). Both findings were, in fact, evident in earlier multivariate studies (Holloway, R. L. (1979). In Hahn, M. E., Jensen C., and Dudek, B. C. (eds.), Development and Evolution of Brain Size: Behavioral Implications, Academic Press, New York, pp. 59–88; Sacher, G. A. (1970). In Noback, C. R., and Montagna, W. (eds.), The Primate Brain: Advances in Primatology. Vol. 1, Appleton-Century-Crofts, Educational Division, Meredith Corporation, New York, pp. 245–287). However, new studies employing proportional data aimed at conveying input/output relationships between brain components show further groupings of species that share convergences in lifestyles (de Winter, W., and Oxnard, C. E. (2001). Nature 409: 710–714). The convergences are brought about by combinations of brain variables that seem to be associated with brain functions implied by the specific lifestyles. Our most recent results demonstrate that chimpanzees and humans are especially different from one another, and the difference is not due to size alone. Part of this difference is merely a continuation, from chimpanzees towards humans, of a trend already present across all other primates that relates mainly to neocortical increase. But several other large and independent differences are not in the direction of the overall primate trend, but are differences of humans from all other mammals examined including all nonhuman primates. The combinations of brain variables associated with the latter differences are not related simply to enhancement of the neocortex, but seem to reflect other internal relationships. The overall separation of humans and chimpanzees is so large that it goes far beyond the conventional 98.6% commonality in their DNAs. It fits better with more recent molecular, developmental and evolutionary studies implying a considerably greater difference between chimpanzees and humans than usually recognized.  相似文献   

9.
10.
The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities. Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern are dynamic communities with extensive metabolic potentials and changing community structures. Halophilic Bacteria were detected in Mono Lake and the lower salinity ponds at the Shark Bay saltern in Western Australia, except when the crystallizer samples were stressed by exposure to Acid Green Dye #9899. At Shark Bay, halophilic Archaea were found only in the crystallizer samples. These data confirm both the metabolic diversity and the phylogenetic complexity of the microbial communities and assert the need to develop more versatile media for the cultivation of the diversity of bacteria in hypersaline environments. Journal of Industrial Microbiology & Biotechnology (2002) 28, 48–55 DOI: 10.1038/sj/jim/7000175 Received 20 May 2001/ Accepted in revised form 15 June 2001  相似文献   

11.
The effect of foliar-applied glycinebetaine (GB) on chloroplast ultrastructure, the amount of chlorophyll and proteins and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity in stressed tomato leaves were analysed. Initial, and total activity and activation state state of RuBPCO were also measured. RuBPCO activities, chloroplast area, and the number of plastoglobuli remained unaffected, while the relative area of starch granules increased in GB-treated, salt-stressed tomato leaflets. Under drought-stress, the relative area of plastoglobuli increased upon GB application. The primary effect of GB was, however, the increased protein and chlorophyll content.  相似文献   

12.
13.
The bioconversion of hydrocarbons by Pseudomonas oleovorans has been studied in two-phase systems. In these systems, the hydrocarbon substrate is present in sufficient amounts to form the bulk apolar phase. High cell densities (up to 20 mg dry mass per ml water phase) are reached when the apolar phase consists of n-octane, 1-octene or 1-decene. There is considerable cell damage after incubation for 50–70 h. Loss of cell viability and membrane damage as observed by freeze-fracture electron microscopy correlate with a loss of hydrocarbon oxidation, measured as the conversion of 1-octene to 1,2-epoxyoctane. The final yield of oxidized hydrocarbon in the apolar substrate phase can be increased substantially by replacing the damaged cells with freshly grown cells. Yields up to 150 mg 1,2-epoxyoctane per ml 1-octene and up to 20–25 mg 1,2-epoxyoctane per ml culture were obtained with four cycles of the cell renewal procedure. Several other substrates in addition to octene were tested in the optimized two-phase system. Of these, 1-decene was converted into (R)-1,2-epoxydecane with an optical purity of 60%, while allylbenzene was converted into chiral 1,2-epoxy-3-phenylpropane. Some of the future applications of the conversion products are discussed.  相似文献   

14.
Biofilms by the hyperhalophilic archaea Halorubrum sp. and Halobacterium sp. were analyzed, and for the first time the progression of structural features and the developmental parameters of these sessile populations are described. Optical slicing and digital analysis of sequential micrographs showed that their three dimensional structure was microorganism dependent. Biofilms of Halobacterium sp. developed in clusters that covered about 30% of the supporting surface at the interface level and expanded over about 86?±?4 μm in thickness, while Halorubrum sp. biofilms covered less than 20% of the surface and reached a thickness of 41?±?1 μm. The kinetics of growth was lower in biofilms, with generation times of 27?±?1 and 36?±?2 h for Halobacterium sp. and Halorubrum sp., respectively, as compared to 8.4?±?0.3 and 14?±?1 h in planktonic cultures. Differences between microorganisms were also observed at the cell morphology level. The interaction between the two microorganisms was also evaluated, showing that Halobacterium sp. can outcompete already established Halorubrum sp. biofilms by a mechanism that might include the combined action of tunnelling swimmers and antimicrobial compounds.  相似文献   

15.
16.
17.
Calcium is necessary for secretion of pituitary hormones. Many of the biological effects of Ca2+ are mediated by the Ca2+-binding protein calmodulin (CaM), which interacts specifically with proteins regulated by the Ca2+-CaM complex. One of these proteins is myosin light chain kinase (MLCK), a Ca2+-calmodulin dependent enzyme that phosphorylates the regulatory light chains of myosin, and has been implicated in motile processes in both muscle and non-muscle tissues. We determined the content and distribution of CaM and CaM-binding proteins in bovine pituitary homogenates, and subcellular fractions including secretory granules and secretory granule membranes. CaM measured by radioimmunoassay was found in each fraction; although approximately one-half was in the cytosolic fraction, CaM was also associated with the plasma membrane and secretory granule fractions. CaM-binding proteins were identified by an 251-CaM gel overlay technique and quantitated by densitometric analysis of the autoradiograms. Pituitary homogenates contained nine major CaM-binding proteins of 146, 131, 90, 64, 58, 56, 52, 31 and 22 kilodaltons (kDa). Binding to all the bands was specific, Cat+-sensitive, and displaceable with excess unlabeled CaM. Severe heat treatment (100°C, 15 min), which results in a 75% reduction in phosphodiesterase activation by CaM, markedly decreased 251I-CaM binding to all protein bands. Secretory granule membranes showed enhancement for CaM-binding proteins with molecular weights of 184, 146, 131, 90, and 52000. A specific, affinity purified antibody to chicken gizzard MLCK bound to the 146 kDa band in homogenates, centrifugal subcellular fractions, and secretory granule membranes. No such binding was associated with the granule contents. The enrichment of MLCK and other CaM-binding proteins in pituitary secretory granule membranes suggests a possible role for CaM and/or CaM-binding proteins in granule membrane function and possibly exocytosis.  相似文献   

18.
Referee: Franz Schmid, Biochemicshes Laboratorium, Universitaet Bayeuth, D-95440 Bayeuth, Germany

abg-Crystallins are the major protein components in the vertebrate eye lens — a as a molecular chaperone and b and g as structural proteins. Surprisingly, the latter two share some structural characteristics with a number of microbial stress proteins. The common denominator is not only the Greek key topology of their polypeptide chains but also their high intrinsic stability, which, in certain microbial crystallin homologs, is further enhanced by high-affinity Ca2+-binding. Recent studies of natural and mutant vertebrate bg-crystallins as well as spherulin 3a from Physarum polycephalum and Protein S from Myxococcus xanthus allowed the correlation of structure and stability of crystallins to be elucidated in some detail. From the thermo-dynamic point of view, stability increments come from (1) local interactions involved in the close packing of the cooperative units, (2) the all-b secondary structure of the Greek-key motif, (3) intramolecular interactions between domains, (4) intermolecular domain interactions, including 3D domain swapping and (v) excluded volume effects due to “molecular crowding” at the high cellular protein concentrations. Apart from these contributions to the Gibbs free energy of stability, significant kinetic stabilization originates from the high activation energy barrier determining the rate of unfolding from the native to the unfolded state. From the functional point of view, the high stability is responsible for the long-term transparency of the eye lens, on the one hand, and the stress resistance of the microorganisms in their dormant state on the other. Local structural perturbations due to chemical modification, wrong protein interactions, or other irreversible processes may lead to protein aggregation. A leading cataract hypothesis is that only after a-crystallin, a member of the small heat-shock protein family, is titrated out does pathological opacity occur. Understanding the structural basis of protein stability in the healthy eye lens is the route to solve the enormous medical and economical problem of cataract.  相似文献   

19.
Typical organelles for protein storage occur in seeds, protein bodies are found in haploid, diploid or triploid tissues and are single membrane bound. In some plants, they exhibit inclusions (globoid and crystalloid), but not in Gramineae endosperm or in Leguminosae cotyledons. A relationship between species and protein body ultrastructure can be put forward. The chemical composition is based mainly on storage proteins and phytic acid but, hydrolytic enzymes(protease and phytase), cations and ribonucleic acids are also present. Other minor biochemical components include oxalic acid, carbohydrates (excluding starch) and lipids. The locations of the storage proteins, enzymes and phytin are described. Protein body ontogeny during seed maturation has given rise to much controversy: are they plastidic or vacuolar? Recent studies on the location of proteosynthesis show that protein bodies are probably synthesized in endoplasmic reticulum lumen and that the Golgi apparatus plays an important role in storage protein synthesis. During germination protein bodies swell and fuse, giving rise to the cell central vacuole, while the integrity of the membrane is maintained. Protein bodies may be considered as being an example of tonoplast origin from endo-plasmic reticulum.  相似文献   

20.
ABSTRACT:?

Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号