首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The past 25 years have seen significant advances in understanding the diversity and functions of glycoprotein glycans in Drosophila melanogaster. Genetic screens have captured mutations that reveal important biological activities modulated by glycans, including protein folding and trafficking, as well as cell signaling, tissue morphogenesis, fertility, and viability. Many of these glycan functions have parallels in vertebrate development and disease, providing increasing opportunities to dissect pathologic mechanisms using Drosophila genetics. Advances in the sensitivity of structural analytic techniques have allowed the glycan profiles of wild-type and mutant tissues to be assessed, revealing novel glycan structures that may be functionally analogous to vertebrate glycans. This review describes a selected set of recent advances in understanding the functions of N-linked and O-linked (non-glycosaminoglycan) glycoprotein glycans in Drosophila with emphasis on their relatedness to vertebrate organisms.  相似文献   

2.
Homyk T 《Genetics》1977,87(1):105-128
Several simple tests have been applied to study the behavior and performance of mutants of Drosophila melanogaster isolated in the preceding study (Homyk and Sheppard 1977). The tests showed that many mutants have specific behavioral abnormalities and that most mutants can easily be distinguished from an Oregon-R control on the basis of their behavioral phenotypes. Mutants representing six genes hop poorly and are unable to initiate wing oscillation when tethered. Mutations in four genes reduce the level of spontaneous motor activity of flies and increase the excitability threshold necessary to induce high activity motor functions such as running and flying. The latter mutants are referred to as hypoactive. Another class, stress-sensitive, including mutations in three genes, are reversibly paralyzed by mechanical shock. Mosaic analyses suggest that six mutations affect muscular tissue and two others affect neural tissue. It is also shown that tan mutants fail to retract their forelegs during flight and that the focus responsible for this behavioral phenotype is the compound eye. Specific behavioral abnormalities of several mutants are discussed in conjunction with previous studies from many laboratories concerning the participation of neural, sensory and muscular elements producing behavior in normal (nonmutant) insects. Such considerations are an essential prelude to anatomical and physiological studies of the mutants in Drosophila.  相似文献   

3.
Drosophila melanogaster offers many unique advantages for deciphering the complexities of glycan biosynthesis and function. The completion of the Drosophila genome sequencing project as well as the comprehensive catalogue of existing mutations and phenotypes have lead to a prolific database where many of the genes involved in glycan synthesis, assembly, modification, and recognition have been identified and characterized. Recent biochemical and molecular studies have elucidated the structure of the glycans present in Drosophila. Powerful genetic approaches have uncovered a number of critical biological roles for glycans during development that impact on our understanding of their function during mammalian development. Here, we summarize key recent findings and provide evidence for the usefulness of this model organism in unraveling the complexities of glycobiology across many species.  相似文献   

4.
We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito.  相似文献   

5.
The matrix metalloproteinase (MMP) family is heavily implicated in many diseases, including cancer. The developmental functions of these genes are not clear, however, because the >20 mammalian MMPs can be functionally redundant. Drosophila melanogaster has only two MMPs, which are expressed in embryos in distinct patterns. We created mutations in both genes: Mmp1 mutants have defects in larval tracheal growth and pupal head eversion, and Mmp2 mutants have defects in larval tissue histolysis and epithelial fusion during metamorphosis; neither is required for embryonic development. Double mutants also complete embryogenesis, and these represent the first time, to our knowledge, that all MMPs have been disrupted in any organism. Thus, MMPs are not required for Drosophila embryonic development, but, rather, for tissue remodeling.  相似文献   

6.
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.  相似文献   

7.
Immune biasing by helminth glycans   总被引:8,自引:0,他引:8  
The ability of helminth parasites to drive polarized Th2 responses has been known for some time. Interestingly, many recent studies have shown that helminth-expressed glycan activation of host immune cells accounts for much of the anti-inflammatory and Th2-biasing observed. This microreview attempts to cover the biology of expression of immunomodulatory glycans in various helminth parasites, the immune cells they interact with including the production of cytokines, chemokines and antibodies. We also discuss the potential cell surface receptors which are capable of binding certain glycans and the known mech-anisms which ultimately lead to production of anti-inflammatory mediators as well as polarizing CD4+ T-cell responses to Th2-type in the host. Lastly, we discuss a novel mechanism for activation of antigen-presenting cells by a specific helminth glycan that leads to maturation of Type 2 dendritic cells.  相似文献   

8.
Drosophila has highly efficient defenses against infection. These include both cellular immune responses, such as the phagocytosis of invading microorganisms, and humoral immune responses, such as the secretion of antimicrobial peptides into the hemolymph [1] [2]. These defense systems are thought to interact, but the nature and extent of these interactions is not known. Here we describe a method for inhibiting phagocytosis in Drosophila blood cells (hemocytes) by injecting polystyrene beads into the body cavity. This treatment does not in itself make a fly susceptible to Escherichia coli infection. However, when performed on flies carrying the mutation immune deficiency (imd), which affects the humoral immune response [3], the treatment results in a striking decrease in resistance to infection. We therefore carried out a sensitized genetic screen to identify immunocompromised mutants by co-injecting beads and E. coli. From this screen, we identified a new gene we have named red shirt and identified the caspase Dredd as a regulator of the Drosophila immune response. The observation that mutants with defects in the humoral immune response are further immunocompromised by blocking phagocytosis, and thus inhibiting the cellular immune response, shows that the Drosophila cellular and humoral immune responses act in concert to fight infection.  相似文献   

9.
Nox regulation of smooth muscle contraction   总被引:2,自引:0,他引:2  
The catalytic subunit gp91phox (Nox2) of the NADPH oxidase of mammalian phagocytes is activated by microbes and immune mediators to produce large amounts of reactive oxygen species (ROS) which participate in microbial killing. Homologs of gp91phox, the Nox and Duox enzymes, were recently described in a range of organisms, including plants, vertebrates, and invertebrates such as Drosophila melanogaster. While their enzymology and cell biology are being extensively studied in many laboratories, little is known about in vivo functions of Noxes. Here, we establish and use an inducible system for RNAi to discover functions of dNox, an ortholog of human Nox5 in Drosophila. We report here that depletion of dNox in musculature causes retention of mature eggs within ovaries, leading to female sterility. In dNox-depleted ovaries and ovaries treated with a Nox inhibitor, muscular contractions induced by the neuropeptide proctolin are markedly inhibited. This functional defect results from a requirement for dNox-for the proctolin-induced calcium flux in Drosophila ovaries. Thus, these studies demonstrate a novel biological role for Nox-generated ROS in mediating agonist-induced calcium flux and smooth muscle contraction.  相似文献   

10.
Neurodegenerative human diseases are caused by nerve cell death and anatomical changes in some brain regions. Molecular genetic studies of Drosophila showed that this organism can serve as a valuable test-system for conserved mechanisms underlying human nervous system disorders. Analysis of brain functions is possible when the mutants with disturbed functions are available. In this study, we have developed a unique collection of Drosophila melanogaster mutants with morphological and neurodegenerative changes in brain structure, which were induced by chemical mutagens.  相似文献   

11.
The deoxyhexose sugar fucose has an important fine-tuning role in regulating the functions of glycoconjugates in disease and development in mammals. The two genetic model organisms Caenorhabditis elegans and Drosophila melanogaster also express a range of fucosylated glycans, and the nematode particularly has a number of novel forms. For the synthesis of such glycans, the formation of GDP-fucose, which is generated from GDP-mannose in three steps catalysed by two enzymes, is required. By homology we have identified and cloned cDNAs encoding these two proteins, GDP-mannose dehydratase (GMD; EC 4.2.1.47) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GER or FX protein; EC 1.1.1.271), from both Caenorhabditis and Drosophila. Whereas the nematode has two genes encoding forms of GMD (gmd-1 and gmd-2) and one GER-encoding gene (ger-1), the insect has, like mammalian species, only one homologue of each (gmd and gmer). This compares to the presence of two forms of both enzymes in Arabidopsis thaliana. All corresponding cDNAs from Caenorhabditis and Drosophila, as well as the previously uncharacterized Arabidopsis GER2, were separately expressed, and the encoded proteins found to have the predicted activity. The biochemical characterization of these enzymes is complementary to strategies aimed at manipulating the expression of fucosylated glycans in these organisms.  相似文献   

12.
The whole genome approach enables the characterization of all components of any given biological pathway. Moreover, it can help to uncover all the metabolic routes for any molecule. Here we have used the genome of Drosophila melanogaster to search for enzymes involved in the metabolism of fucosylated glycans. Our results suggest that in the fruit fly GDP-fucose, the donor for fucosyltransferase reactions, is formed exclusively via the de novo pathway from GDP-mannose through enzymatic reactions catalyzed by GDP-D-mannose 4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (GMER, also known as FX in man). The Drosophila genome does not have orthologs for the salvage pathway enzymes, i.e. fucokinase and GDP-fucose pyrophosphorylase synthesizing GDP-fucose from fucose. In addition we identified two novel fucosyltransferases predicted to catalyze alpha1,3- and alpha1,6-specific linkages to the GlcNAc residues on glycans. No genes with the capacity to encode alpha1,2-specific fucosyltransferases were found. We also identified two novel genes coding for O-fucosyltransferases and a gene responsible for a fucosidase enzyme in the Drosophila genome. Finally, using the Drosophila CG4435 gene, we identified two novel human genes putatively coding for fucosyltransferases. This work can serve as a basis for further whole-genome approaches in mapping all possible glycosylation pathways and as a basic analysis leading to subsequent experimental studies to verify the predictions made in this work.  相似文献   

13.
14.
Ayres JS  Freitag N  Schneider DS 《Genetics》2008,178(3):1807-1815
We extended the use of Drosophila beyond being a model for signaling pathways required for pattern recognition immune signaling and show that the fly can be used to identify genes required for pathogenesis and host-pathogen interactions. We performed a forward genetic screen to identify Drosophila mutations altering sensitivity to the intracellular pathogen Listeria monocytogenes. We recovered 18 mutants with increased susceptibility to infection, none of which were previously shown to function in a Drosophila immune response. Using secondary screens, we divided these mutants into two groups: In the first group, mutants have reduced endurance to infections but show no change in bacterial growth. This is a new fly immunity phenotype that is not commonly studied. In the second group, mutants have a typical defense defect in which bacterial growth is increased and survival is decreased. By further challenging mutant flies with L. monocytogenes mutants, we identified subgroups of fly mutants that affect specific stages of the L. monocytogenes life cycle, exit from the vacuole, or actin-based movement. There is no overlap between our genes and the hundreds of genes identified in Drosophila S2 cells fighting L. monocytogenes infection, using genomewide RNAi screens in vitro. By using a whole-animal model and screening for host survival, we revealed genes involved in physiologies different from those that were found in previous screens, which all had defects in defensive immune signaling.  相似文献   

15.
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.  相似文献   

16.
Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.  相似文献   

17.
Morgue is a unique multi-domain protein that contains a zinc finger motif, an F box, and a variant E2 conjugase domain. The presence of these domains suggests potentially complex and novel functions for Morgue in ubiquitination pathways. Morgue was originally identified via its gain-of-function enhancement of eye cell death phenotypes in Drosophila and ectopic expression of Morgue also influences circadian rhythms. However, there is as yet little known about Morgues normal developmental or physiological functions. To address this issue, we generated several morgue loss-of-function mutants via P element excision mutagenesis and analyzed the mutant phenotypes during the fly life cycle. These studies revealed that morgue null mutants are viable, though approximately 10% of the mutants exhibit defects in pupal spiracle eversion and malformations in the adult abdominal cuticle. In addition, a similar subset of morgue mutant embryos exhibited alterations in the normal number, position, or morphology of specific neurons and glia. Analysis of Morgue protein localization was addressed through generation of a transgenic fly strain that expresses a GFP::Morgue fusion protein. Use of this strain revealed Morgue protein localization in multiple cellular compartments, including nuclei, cytoplasm and membranes. Taken together, these diverse phenotypes and distribution patterns suggest pleiotropic functions for Morgue.  相似文献   

18.
19.
20.
TRIpartite Motif(TRIM) family proteins are ring finger domain-containing,multi-domain proteins implicated in many biological processes. Members of the TRIM-9/C-I subfamily of TRIM proteins,including TRIM-9,MIDI and MID2,have neuronal functions and are associated with neurological diseases.To explore whether the functions of C-I TRIM proteins are conserved in invertebrates,we analyzed Caenorhabditis elegans and Drosophila trim-9 mutants.C.elegans trim-9 mutants exhibit defects in the ventral guidance of h...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号