首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Xiao P  Mori T  Kamei I  Kondo R 《Biodegradation》2011,22(5):859-867
1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) was used as the substrate for a degradation experiment with the white rot fungi Phlebia lindtneri GB-1027 and Phlebia brevispora TMIC34596, which are capable of degrading polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated biphenyls (PCBs). Pure culture of P. lindtneri and P. brevispora with DDT (25 μmol l−1) showed that 70 and 30% of DDT, respectively, disappeared in a low-nitrogen medium after a 21-day incubation period. The metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS). Both fungi metabolized DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2-bis(4-chlorophenyl)acetic acid (DDA) and 4,4-dichlorobenzophenone (DBP). Additionally, DDD was converted to DDA and DBP. DDA was converted to DBP and 4,4-dichlorobenzhydrol (DBH). While DBP was treated as substrate, DBH and three hydroxylated metabolites, including one dihydroxylated DBP and two different isomers of monohydroxylated DBH, were produced from fungal cultures, and these hydroxylated metabolites were efficiently inhibited by the addition of a cytochrome P-450 inhibitor, piperonyl butoxide. These results indicate that the white rot fungi P. lindtneri and P. brevispora can degrade DBP/DBH through hydroxylation of the aromatic ring. Moreover, the single-ring aromatic metabolites, such as 4-chlorobenzaldehyde, 4-chlorobenzyl alcohol and 4-chlorobenzoic acid, were found as metabolic products of all substrate, demonstrating that the cleavage reaction of the aliphatic-aryl carbon bond occurs in the biodegradation process of DDT by white rot fungi.  相似文献   

2.
The white-rot fungus Phlebia brevispora BAFC 633 produces laccases in large proportions. In this work P. brevispora BAFC 633 was grown on Pinus taeda wood chips in 10-L bioreactors. To select the biopulping experimental conditions, we analyzed the variables affecting enzymatic laccase activity in the culture supernatants, indicating that the suitable incubation temperature was 30 °C in order to promote enzyme stability. Phlebia brevispora BAFC 633 secreted 744 U/g of laccase, selectively removing lignin during biotreatment of wood chips, causing a reduction in Kappa number and 10% weight loss, and creating a more open structure and better access to the pulping liquor, which would require less chemical consumption, thus diminishing the environmental impact of the chemical pulping process.These results support the biotechnological potential of P. brevispora BAFC 633 for biopulping processes and enhance the potential for bioprospecting native isolates of the microflora of our country's natural environment.  相似文献   

3.
A degradation experiment on PCDDs and phylogenetical analyses were carried out on newly isolated 2,7-dichlorodibenzo-p-dioxin (2,7-diCDD)-degrading white-rot fungi, strains BMC3014, BMC9152, and BMC9160. When these fungi were incubated with tri- or tetraCDDs, the substrates were degraded efficiently, and hydroxylated metabolites were detected. On the other hand, 1,3,6,8-tetrachlorodibenzo-p-dioxin was not decreased, and no metabolites were detected. Phylogenetic analysis of internal transcribed spacers (ITSs) containing rRNA gene sequence (ITS-rDNA) clarified that these strains belonged to the genus Phlebia and were closely related to the fungi Phlebia lindtneri, strains MZ-227 and MG-60, which had both been isolated as 2,7-diCDD-degrading fungi in our previous study. Based on this phylogenetical relationship, other Phlebia genera species were used for a degradation experiment on 2,7-diCDD and 1,3,6,8-tetraCDD. Phlebia acerina and Phlebia brevispora degraded 2,7-diCDD about 40 and 80%, respectively, over 14 days of incubation. It became clear that P. brevispora can degrade 1,3,6,8-tetraCDD and transform it to monohydroxy-tetraCDD, monomethoxy-tetraCDD, dimethoxy-tetraCDD, dimethoxy-triCDD, and 3,5-dichlorocatechol in the treatment cultures. In this paper, we could clearly prove for the first time by identifying the metabolites that white-rot fungus P. brevispora could degrade the recalcitrant dioxin, 1,3,6,8-tetraCDD.  相似文献   

4.
Remazol brilliant blue R (RBBR) is an anthraquinone dye derived from anthracene that is decolorized by a white rot fungus, Phlebia brevispora. Interestingly, P. brevispora produces two phenomena of yellowish and pinkish colors during the degradation of RBBR. Here, we characterized the decolorization of RBBR by P. brevispora. The fungus was significantly different between the two colors via UV spectrophotometry, and the morphology of the hyphae observed in the respective color culture was also entirely different. Moreover, both of the two ligninolytic enzymes, laccase and manganese‐dependent peroxidase (MnP), were remarkably stimulated in the yellowish culture at the beginning of the decolorization. It is possible that the RBBR decolorizing mechanism might be primarily related to the amount of laccase and MnP produced in the yellowish culture. Thus, the decolorized color may be rapidly estimated at initial period of incubation. In addition, GeneFishing technology revealed that two genes were differentially expressed in yellowish culture.  相似文献   

5.
Toxic coplanar polychlorinated biphenyls (Co-PCBs) were used as substrates for a degradation experiment with white-rot fungus, Phlebia brevispora TMIC33929, which is capable of degrading polychlorinated dibenzo-p-dioxins. Eleven PCB congener mixtures (7 mono-ortho- and 4 non-ortho-PCBs) were added to the cultures of P. brevispora and monitored by high resolution gas chromatography and mass spectrometry (HRGC/HRMS). Five PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl, 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, 3,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl were degraded by P. brevispora. To investigate the fungal metabolism of PCB, each Co-PCB was treated separately by P. brevispora and the metabolites were analyzed by gas chromatography and mass spectrometry (GC/MS) and identified on the basis of the GC/MS comparison with the authentic compound. Meta-methoxylated metabolite was detected from the culture containing each compound. Additionally, para-dechlorinated and -methoxylated metabolite was also detected from the culture with 2,3,3′,4,4′-pentachlorobiphenyl, 2,3′,4,4′,5-pentachlorobiphenyl, and 2,3′,4,4′,5,5′-hexachlorobiphenyl, which are mono-ortho-PCBs. In this paper, we identified the congener specific degradation of coplanar PCBs by P. brevispora, and clearly proved for the first time by identifying the metabolites that the white-rot fungus, P. brevispora, transformed recalcitrant coplanar PCBs.  相似文献   

6.
Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l−1 Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.  相似文献   

7.
Cellobiose dehydrogenase (CDH), an extracellular flavocytochrome produced by several wood-degrading fungi, was detected in the culture supernatant of the selective delignifier Phlebia lindtneri maintained on a cellulose-based liquid medium. Cellobiose dehydrogenase was purified to homogeneity by a rapid procedure, using ammonium sulfate precipitation, ion-exchange chromatography, and chromatofocusing. The enzyme was recovered with a 61.2 fold increased specific activity and a yield of 47.5%. As determined by SDS-PAGE, the molecular mass of the purified enzyme was found to be 104.5 kDa and its isoelectric point was 4.0. The carbohydrate content of the purified enzymes was 22%. In this work, the cellobiose dehydrogenase gene cdh1 and its corresponding cDNA from fungi Phlebia lidnteri were isolated, cloned, and characterized. The 2319 bp full-length cDNA of cdh1 encoded a mature CDH protein containing 755 amino acids, which was preceded by a signal peptide of 17 amino acids. The deduced protein sequence of cdh1 shared significant similarity with other known fungal cellobiose dehydrogenase.  相似文献   

8.
9.
Bioprocessing of wheat straw was carried out by Phlebia brevispora under solid state conditions. Effect of different supplements on lignocellulolytic enzymes production, degradation of straw cell wall fibers and its resultant effect on nutritional quality of wheat straw were studied. Ammonium chloride and malt extract were more effective in terms of ligninolysis and enhanced in vitro digestibility. The concentration of the selected supplements and the moisture content was worked out using response surface methodology in order to minimize the loss in total organic matter so as to selectively degrade lignin. The experiment was scaled up to batches of 200 g under optimized conditions and the degraded substrate was analyzed for its biochemical properties. P. brevispora degraded 290 g/kg of lignin and enhanced the in vitro digestibility from 150 to 268 g/kg (78%). Crude protein, amino acids, total phenolic contents and antioxidant properties were significantly higher in degraded straw.  相似文献   

10.
Xiao P  Mori T  Kondo R 《New biotechnology》2011,29(1):107-115
There is very limited information on the biotransformation of organochlorine pesticide chlordane by microorganisms, and no systematic study on the metabolic products and pathways for chlordane transformation by wood-rot fungi has been conducted. In this study, trans-chlordane was metabolized with the wood-rot fungi species Phlebia lindtneri, Phlebia brevispora and Phlebia aurea, which are capable of degrading polychlorinated dibenzo-p-dioxin and heptachlor epoxide. At the end of 42 days of incubation, over 50% of trans-chlordane was degraded by the fungal treatments in pure cultures. These fungi transformed trans-chlordane to at least eleven metabolites including a large amount of hydroxylated products such as 3-hydroxychlordane, chlordene chlorohydrin, heptachlor diol, monohydroxychlordene and dihydroxychlordene. P. lindtneri particularly can metabolize oxychlordane, a recalcitrant epoxide product of chlordane, into a hydroxylated product through substitution of chlorine atom by hydroxyl group. The present results suggest that hydroxylation reactions play an important role in the metabolism of trans-chlordane by these Phlebia species. Additionally, transformation of trans-chlordane and production of hydroxylated metabolites were efficiently inhibited by the addition of cytochrome P450 inhibitors, piperonyl butoxide and 1-aminobenzotriazole, demonstrating that fungal cytochrome P450 enzymes are involved in some steps of trans-chlordane metabolism, particularly in the hydroxylation process.  相似文献   

11.
The model polychlorinated dibenzo-p-dioxins (PCDDs) 2,7-dichloro-, 2,3,7-trichloro, 1,2,6,7-, 1,2,8,9-, and 1,3,6,8-tetrachlorodibenzo-p-dioxin were used as substrates for a degradation experiment with the white-rot fungus Phlebia lindtneri. 2,7-Dichlorodibenzo-p-dioxin (2,7-diCDD) was biotransformed to hydroxylated diCDD and methoxylated diCDD. With the exception of 1,3,6,8-tetrachlorodibenzo-p-dioxin, the tri- and tetrachlorodibenzo-p-dioxins were biotransformed to hydroxyl and methoxyl compounds by P. lindtneri. The degradation rate of 1,2,6,7-tetrachlorodibenzo-p-dioxin was higher than that of 2,3,7-trichlorodibenzo-p-dioxin and no degradation of 1,3,6,8-tetrachlorodibenzo-p-dioxin was observed. These results indicate that the degradation of these PCDDs depends on the chlorination patterns of the substrates. This is the first report of the hydroxylation and methoxylation of tri- to tetra-CDDs by a fungal strain.  相似文献   

12.
White rot fungi of the genus Phlebia have demonstrated a high capacity to degrade organic pollutants, including polychlorinated dibenzo-p-dioxins and polychlorinated biphenyls. In this study, we evaluated the ability of 18 white rot fungi species of genus Phlebia to degrade heptachlor and heptachlor epoxide, and described the metabolic pathways by selected white rot fungi. Phlebia tremellosa, Phlebia brevispora and Phlebia acanthocystis removed about 71%, 74% and 90% of heptachlor, respectively, after 14 days of incubation. A large amount of heptachlor epoxide and a small amount of 1-hydroxychlordene and 1-hydroxy-2,3-epoxychlordene were detected as metabolic products of heptachlor from most fungal cultures. The screening of heptachlor epoxide-degrading fungi revealed that several fungi are capable of degrading heptachlor epoxide, which is a recalcitrant metabolite of heptachlor. Phlebia acanthocystis, P. brevispora, Phlebia lindtneri and Phlebia aurea removed about 16%, 16%, 22% and 25% of heptachlor epoxide, respectively, after 14 days of incubation. Heptachlor diol and 1-hydroxy-2,3-epoxychlordene were produced in these fungal cultures as metabolites, suggesting that the hydrolysis and hydroxylation reaction occur in the epoxide ring and in position 1 of heptachlor epoxide, respectively.  相似文献   

13.
Aims: To improve the digestibility of paddy straw to be used as animal feed by means of selective delignification using white rot fungi. Methods and Results: Solid state fermentation of paddy straw was carried out with some white rot fungi for 60 days. Different biochemical analyses, e.g. total organic matter (TOM) loss, hemicellulose loss, cellulose loss, lignin loss and in vitro digestibility, were carried out along with laccase, xylanase and carboxymethyl cellulase activity. The results were compared with that of a widely studied fungus Phanerochaete chrysosporium, which degraded 464 g kg?1 TOM and enhanced the in vitro digestibility from 185 to 254 g kg?1 after 60 days of incubation. Straw inoculated with Phlebia brevispora possessed maximum crude protein. Conclusions: All the tested white rot fungi efficiently degraded the lignin and enhanced the in vitro digestibility of paddy straw. Phlebia brevispora, Phlebia radiata and P. chrysosporium enhanced the in vitro digestibility almost to similar levels, while the loss in TOM was much lesser in P. brevispora and P. radiata when compared to P. chrysosporium. Significance and Impact of the Study: The study reflects the potential of P. brevispora and P. radiata as suitable choices for practical use in terms of availability of organic matter with higher protein value, selective ligninolysis and better digestibility.  相似文献   

14.
The ligninolytic fungus Phlebia radiata growing in a low-nitrogen medium with Avicel cellulose as the sole carbon source produced a full spectrum of celluloytic enzymes. Some properties of these enzymes were investigated during the growth of the fungal culture.  相似文献   

15.
A variety of methods for feed development have been introduced during last few years. Bioprocessed agricultural residues may prove a better alternative to provide animal feed. For the purpose, some white rot fungi were allowed to degrade wheat straw up to 30 days under solid state conditions. Several parameters including loss in total organic matter, ligninolysis, in vitro digestibility of wheat straw and estimation of different antioxidant activities were studied. All the fungi were able to degrade lignin and enhance the in vitro digestibility. Among all the tested fungi, Phlebia brevispora degraded maximum lignin (30.6%) and enhanced the digestibility from 172 to 287 g/kg. Different antioxidant properties of fungal degraded wheat straw were higher as compared to the uninoculated control straw. Phlebia floridensis found to be more efficient organism in terms of higher antioxidant activity (70.8%) and total phenolic content (9.8 mg/ml). Thus, bioprocessing of the wheat straw with the help of these organisms seems to be a better approach for providing the animal feed in terms of enhanced digestibility, higher protein content, higher antioxidant activity and availability of biomass.  相似文献   

16.
Various cereal straws are used as feed by supplementing the green forage or other feed stuffs. An experiment was designed to see the effect of different geographic locations and climatological conditions on biochemical constituents, fungal degradation and in vitro digestibility of paddy straw. Paddy straw (PS) obtained from three different geographic locations of India was subjected to solid state fermentation using four white rot fungi i.e. Phlebia brevispora, P. fascicularia, P. floridensis and P. radiata. Changes in the biochemical constituents like water soluble content, hemicellulose, cellulose, lignin, total organic matter, and in vitro digestibility of paddy straw was analyzed over a period of 60 days along with lignocellulolytic enzymes i.e. laccase, xylanase and carboxymethyl cellulase. All the fungi degraded the straw samples and enhanced the in vitro digestibility. The paddy straw, obtained from north western zone (NWZ) suffered a maximum loss (228 g/kg) of lignin by P. radiata, while a maximum enhancement of in vitro digestibility from 185 to 256 g/kg was achieved by P. brevispora, which also caused minimum loss in total organic matter (98 g/kg). In PS obtained from central eastern zone (CEZ) and north eastern zone (NEZ), a maximum amount of lignin (210 and 195 g/kg, respectively) was degraded by P. floridensis and resulted into a respective enhancement of in vitro digestibility from 172 to 246 g/kg and 188 to 264 g/kg. The study demonstrates that geographic locations not only affect the biochemical constituents of paddy straw but the fungal degradation of fibers, their in vitro digestibility and lignocellulolytic enzyme activity of the fungus may also vary.  相似文献   

17.
Summary The ligninolytic enzymes ofPhlebia radiata were produced in static conditions earlier developed forPhanerochaete chrysosporium. The production pattern of lignin peroxidases resembled that ofP. chrysosporium. The extracellular proteins ofPhlebia radiata were separated by isoelectric focusing. Four proteins with acidic isoelectric points (4.15) were detected by peroxidase staining. The peroxidases ofP. radiata reacted with antibodies produced against a peroxidase ofPhanerochaete chrysosporium and vice versa. Thus the lignin peroxidases of the two fungi have major similarities despite slight differences in their isoelectric points and molecular weights. Veratryl alcohol was produced by both fungi and degraded to veratraldehyde, two lactones and a quinone by the ligninolytic cultures.  相似文献   

18.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

19.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   

20.
As a discarded lignocellulosic biomass, chestnut shell is of great potential economic value, thus a sustainable strategy is needed and valuable for utilization of this resource. Herein, the feasibility of biological processes of chestnut shell with Dichomitus squalens, Phlebia radiata and their co-cultivation for lignin-modifying enzymes (LMEs) production and biodegradation of this lignocellulosic biomass was investigated under submerged cultivation. The treatment with D. squalens alone at 12 days gained the highest laccase activity (9.42 ± 0.73 U mg?1). Combined with the data of laccase and manganese peroxidase, oxalate and H2O2 were found to participate in chestnut shell degradation, accompanied by a rapid consumption of reducing sugar. Furthermore, specific surface area of chestnut shell was increased by 77.6–114.1 % with the selected fungi, and total pore volume was improved by 90.2 % with D. squalens. Meanwhile, the surface morphology was observably modified by this fungus. Overall, D. squalens was considered as a suitable fungus for degradation of chestnut shell and laccase production. The presence of LMEs, H2O2 and oxalate provided more understanding for decomposition of chestnut shell by the white-rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号