首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our study, green synthesis of silver nanoparticles was carried out using a red algae Gelidium corneum extract as reducing agent. The obtained silver nanoparticles were characterized by UV–vis, TEM, XRD, FTIR and ICP-MS measurements. FTIR measurements indicated the possible functional groups responsible for the stabilization and reduction of nanoparticles, while XRD analysis results explained the crystalline structure of the particles with centric cubic geometry. TEM micrographs showed that the size of the nanoparticles was between 20–50 nm. According to the broth microdilution test results, AgNPs showed a high antimicrobial activity with very low MIC values (0.51 μg/ml for Candida albicans yeast and 0.26 μg/ml for Escherichia coli bacteria). The different ultrastructural effects of silver nanoparticles on yeast and bacterial cells were observed by TEM. Antibiofilm efficacy studies were also examined in two stages as prebiofilm and postbiofilm effect. In prebiofilm effect studies, AgNPs (0.51 μg/ ml) exhibited 81% reducing effect on biofilm formation. The highest reduction rate in postbiofilm studies was 73.5% and this was achieved with 2.04 μg/ml AgNPs. Our data support that the silver nanoparticles obtained by this environmentally friendly process have potential to be used for industrial and therapeutic purposes.  相似文献   

2.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   

3.
Allium cepa and garlic Allium sativa plants were used to evaluate their potential synthesis of silver nanoparticles and their antibacterial effect on Streptococcus pneumoniae and Pseudomonas aeruginosa. Transmission electron microscopy (SEM) was used to distinguish the morphology of the nanoparticles attained from plant extracts. Energy dispersive X-ray (EDX) spectrometer established the existence of elemental sign of the silver and homogenous allocation of silver nanoparticles. Diffraction by using X ray (XRD) analysis for the formed AgNPs revealed spherical plus cubical shapes structure with different planes ranged between 111 and 311 planes. The antibacterial action of AgNPs against vaginal pathogens, Streptococcus pneumoniae and Pseudomonas aeruginosa was recognized. Our work showed a rapid, eco-safety and suitable method for the synthesis of AgNPs from Allium cepa and garlic Allium sativa extracts and can be used in biomedical applications.  相似文献   

4.
Aedes mosquitoes are the most important group of vectors that transmit pathogens, including arboviruses, and cause human diseases such as dengue fever, yellow fever, Zika virus, and Chikungunya. Biosynthesis and the use of green silver nanoparticles (AgNPs) is a vital step to identify reliable and eco-friendly controls for these vectors. In this study, Aedes (Ae.) aegypti larvae (2nd and 3rd instar) were exposed to leaf extracts of Ricinus communis (Castor) and AgNPs synthesized from the extract to evaluate their larvicidal potential. Synthesized AgNPs were characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (XRD). Ae. aegypti larvae were treated with different concentrations (50–250 ppm) of the leaf extract and synthesized AgNPs. There were five replicates per treatment, in addition to a positive (temephos) and negative control (dechlorinated water). Mortality was recorded after 12, 24, 36, and 48 h and the data were subjected to Probit analysis. The nanoparticles were more toxic (LC50 = 46.22 ppm and LC90 = 85.30 ppm) than the plant extract (106.24 and 175.73 ppm, respectively). The leaf extracts of Ricinus communis were subjected to HPLC analysis to identify their chemical constituents. This study suggests that plant extracts and synthesized nanoparticles are excellent alternatives to hazardous chemical pesticides used to control vector mosquitoes. This is a potentially useful technique that can reduce aquatic toxicity from insecticide use.  相似文献   

5.
The aqueous cashew leaves extract obtained was investigated for the preparation of gold nanoparticle (AuNPs). The obtained AuNPs were characterized by UV–Visible spectroscopy, FTIR and XRD analysis. Results indicated that the green synthesized AuNPs showed good antibacterial effect against Escherichia coli and Bacillus subtilis and exhibited 74.47% viability on PBMC and 23.56% viability on MCF-7 cell lines at a maximum concentration of 100?µg/ml. Therefore, future studies on antibacterial application in food packing, wound dressing and antihelmintic applications will be studied.  相似文献   

6.
Mosquitoes play a key role in the transmission of some important diseases. The need for controlling these insects is critical to reduce their risks to human and domesticated animals. Recently the trend to explore effective chemical compounds from local plants has begun as a safe means of control. The present study aimed to evaluate the anti-larval activity of Chrysanthemum extract and the prepared silver nanoparticle (AgNPs) against the Aedes aegypti mosquito, the dengue vector in Saudi Arabia. A series of different concentrations of ethanol extract and extract prepared AgNPs against the fourth-life larvae was tested. The effective concentrations of crude extract and AgNPs ranged from 50 to 250 and 10 to 30 ppm respectively, and the death percentages corresponding to these concentrations ranged from 18 to 92 and 36 to 96% respectively. According to the LC50 values of treated larvae, AgNPs (12.754 ppm) is more effective against A. aegypti mosquito larvae than the crude extract (228.345 ppm) at about 17.9 times. The mixing of the plant extract with the silver nitrate has led to potentiation. This is due to the synergy that occurs between the extract and the silver particles during the reduction process. The compounds in the extract are related to the surface of the particles, increasing the strength of their effects. It is recommend to separate the active elements in the Chrysanthemum plant and its preparation in the form of nanoparticles as a promising compound in mosquito control programs with least damage to human kind and the environment.  相似文献   

7.
Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.  相似文献   

8.
Eight new coumarin substituted silver(I) N-heterocyclic carbene (NHC) complexes were synthesized by the interaction of the corresponding imidazolium or benzimidazolium chlorides and Ag2O in dichloromethane at room temperature. Structures of these complexes were established on the basis of elemental analysis, 1H NMR, 13C NMR, IR and mass spectroscopic techniques. The antimicrobial activities of carbene precursors and silver NHC complexes were tested against standard strains: Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and the fungi Candida albicans and Candida tropicalis. Results showed that all the compounds inhibited the growth of the all bacteria and fungi strains and some complexes performed good activities against different microorganisms. Among all the compounds, the most lipophilic complex bis[1-(4-methylene-6,8-dimethyl-2H-chromen-2-one)-3-(naphthalene-2-ylmethyl)benzimidazol-2-ylidene]silver(I) dichloro argentate (5e) was found out as the most active one.  相似文献   

9.
Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV–vis, FT-IR, 1H NMR, GC–MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.  相似文献   

10.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

11.
Microbial resistance to antibiotics is a global concern. The World Health Organization (WHO) has identified antimicrobial resistance as one the three greatest threats for human beings in the 21st century. Without urgent and coordinated action, the world is moving toward a post-antibiotic era, in which normal infections or minor injuries may become fatal. In an effort to find new agents, we report the synthesis and antimicrobial activities of 40 novel 1,3-diphenyl pyrazole derivatives. These compounds have shown zones of growth inhibition up to 85 mm against Acinetobacter baumannii. We tested the active compounds against this Gram-negative bacterium in minimum inhibitory concentration (MIC) tests and found activity with concentration as low as 4 μg/mL.  相似文献   

12.
This study described a simple and green approach for the synthesis of silver nanoparticles (AgNPs) employing benzoin gum water extract as a reducing and capping agent and their applications. The AgNPs were characterized by ultraviolet–visible spectrophotometer, X-ray diffraction pattern, field emission transmission electron microscopy, dynamic light scattering, zeta potential and fourier transform infrared spectroscopy. The AgNPs showed promising antimicrobial activity against various pathogens (Gram-negative, Gram-positive and fungus) and possessed high free radical scavenging activity (104.5 ± 7.21 % at 1 mg/ml). In addition, the AgNPs exhibited strong cytotoxicity towards human cervical cancer and human lung cancer cells as compared to the normal mouse macrophage cells. Moreover, the AgNPs possessed anti-biofilm activity against Escherichia coli, and compatibility to human keratinocyte HaCaT cells, which suggests the use of dressing with the AgNPs in chronic wound treatment. Therefore, AgNPs synthesized by benzoin gum extract are comparatively green and may have broad spectrum potential application in biomedicine.  相似文献   

13.
14.
Influenza viruses have developed resistance to the current classes of drugs, which means they could eventually become more virulent and cause more mortality and hospitalization. Our study aims to investigate the antiviral activity of Rhazya stricta Decne leaves extract in vitro and search for new promising drugs from R. stricta identified compounds in silico. The study was performed in vitro by utilizing Madin-Darby Canine Kidney cell line (MDCK) as a substrate for the influenza virus and estimating the inhibition performance of the plant leaves extract. Additionally, in silico screening was conducted to explore the antiviral activity of R. stricta phytochemicals. We investigated the cytotoxicity of R. stricta leaves extract and its antiviral activity against influenza virus (A/Puerto Rico/8/34 (H1N1)) using the MTT assay. The mode of action of the plant leaves extract during the viral life cycle was tested using time-of-addition assay. In silico analyses were performed, including molecular docking, drug-likeness analysis, and toxicity risk assessment, to state the leading compounds to be developed into an anti-influenza virus drug. The 50% cytotoxicity concentration of the leaves extract was CC50: 184.6 µg/mL, and the 50% inhibition concentration was CI50: 19.71 µgmL. The time of addition assay revealed that R. stricta leaves extract exerted its activity in the late step of the influenza virus replication cycle. In comparison to Oseltamivir, the leading compounds showed better binding affinity and can be developed into oral drugs with low toxicity risk. Isolation and purification of the leading compounds and testing their antiviral activity in vitro and in vivo are required.  相似文献   

15.
Aims: To determine the antibacterial potential of silver nanoparticles (AgNps) synthesized by tea leaf extract against Vibrio harveyi and its protective effect on juvenile Feneropenaeus indicus. Methods and Results: AgNps were synthesized by a simple procedure using tea leaf extract as the reducing agent. Bacteriological tests were performed in Luria–Bertani medium on solid agar plates and in liquid systems supplemented with V. harveyi against different concentrations of AgNps. AgNps synthesized in the present study were shown to be effective against V. harveyi isolated from F. indicus. The combined results of long‐ and short‐term treatment of AgNps synthesized by tea leaf extract showed a 71% reduction in accumulated mortality. Conclusions: The long‐term administration of AgNps synthesized by tea leaf extracts at the concentration of 10 μg significantly reduced the mortalities in F. indicus from V. harveyi infections. Significance and Impact of the Study: The AgNps synthesized by tea leaf extract may be an alternative to antibiotics in controlling V. harveyi infections.  相似文献   

16.
Plant secondary metabolites have been recently used for the synthesis of different nanoparticles. The present investigation aimed at evaluating the effect of gold (AuNPs) and silver (AgNPs) nanoparticles synthesized using Acalypha fruticosa leaf extracts to control the mosquito Culex pipiens. The A. fruticosa AuNPs and AgNPs spectra displayed their maximum absorption at 550 nm and 440 nm, respectively. The infrared spectra revealed different functional groups related to different chemical compounds. The larval mortality of aqueous leaf extract of A. fruticosa was 499.54 ppm (LC50) and 1734.06 ppm (LC90) after 24 h of treatment. This study revealed that AuNP (LC50, 30.2 and LC90, 104.83 ppm) and AgNP (LC50, 52.86 and LC90, 157.227 ppm) preparations were highly effective compared to the A. fruticosa extract alone and also more affordable, as a smaller amount was required. The present findings show the potential larvicidal effect of the synthesized AuNPs and AgNPs for the control of mosquito-mediated disease transmission.  相似文献   

17.
《Journal of Asia》2022,25(3):101937
Mosquito vectors of major human diseases are currently controlled using chemical and biological products. Extensive insecticide use has led to resistance development and human/environmental health risks, and alternative sustainable control options are needed; in this study, activity of an extract of garlic (Allium sativum; Amaryllidaceae), and silver nanoparticles (AgNPs) synthesized from the extract, were evaluated against 2nd and 3rd instar larvae of the yellow fever mosquito, Ae. aegypti (Diptera: Culicidae). Synthesis of AgNPs was confirmed using UV–Vis spectroscopy, and characterised using powdered X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Larvae were exposed to five concentrations (50, 100, 150, 200, 250 ppm) of garlic extract or synthesized AgNPs, with distilled water and silver nitrate solution (1 mM) as controls. The mortality of larvae was recorded after 6, 12, 24, 36, and 48 h following addition of the respective extracts.Dose- and time-dependent toxicity were recorded in both treatment groups with no mortality in control groups. Exposure to AgNPs at 250 ppm for 48 h yielded 100% mortality for both larval instars, with corresponding LC50 values of 44.77 (2nd) and 62.82 ppm (3rd). Exposure to garlic extract resulted in similar 48-hour mortality (99 ± 0.77% (2nd) and 98 ± 1.10% (3rd), but consistently higher LC50 values after all exposure times compared to AgNPs (e.g. 48-hour exposure: 108.42 ppm (2nd), 129.11 ppm (3rd), suggesting that AgNPs may potentially be used at lower concentrations for Ae. aegypti control.  相似文献   

18.
The effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively. Both lipid mixtures on Milli-Q water were first compressed to the initial surface pressure, Π0 = 30 mN/m and then the subphase was exchanged with the respective (bio)surfactant solution at 1% (w/w). All four synthetic surfactants behaved in a similar way: they increased surface pressure to about 40 mN/m and reduced the storage modulus of surface dilational surface rheology, E′, to the values close to zero. The corresponding fluorescence microscopy pictures confirmed that the lipids mimicking the stratum corneum components were almost completely removed by the synthetic surfactants under the present experimental conditions. The components of the Soapwort extract (SAP) increased surface pressure to significantly higher values than the synthetic surfactants, but even more spectacular increase was observed for the storage modulus of the SAP-penetrated lipid monolayers (up to E′= 715 mN/m).  相似文献   

19.
The feeding preference of pear psylla (Cacopsylla chinensis) varies among pear cultivars. To clarify whether leaf structural factors are related to C. chinensis resistance, eleven pear cultivars of three pear species and their hybrids in China were studied. The population size of C. chinensis in plots of different cultivars was investigated, and leaf paraffin sections of each pear cultivar were observed. Correlation analysis results showed that the thickness of palisade tissue (PT) and the thickness ratio (TR) of PT to leaf (L) were the main factors influencing resistance to C. chinensis. The leaves of cultivar Wujiuxiang and those species from France and the USA exhibited the thickest PT and the highest TR; these three cultivars demonstrated much higher resistance to C. chinensis than did the other cultivars. The cultivar Gold Nijisseiki, with a large C. chinensis population size, showed low PT and TR. The findings of this study may provide valuable information to pear growers, experts and scientists regarding plant protection, cultivation and breeding when selecting suitable varieties to culture from the perspective of pest control.  相似文献   

20.
The first enantioselective total synthesis of the antifungal natural product (indole-N-isoprenyl)-tryptophan-valine diketopiperazine 5 was accomplished. Four stereoisomers of 5 were intentionally prepared, and the (R, R)-isomer is more favorable in enhancing the antifungal bioactivity. Divergent structural optimization of this attractive model was conducted from the chiral pool amino acids. Fine-tuning of the structure protruded the broad-spectrum antifungal 6b, which also showed good preventative efficacy against Sclerotinia scleotiorum. Compound 5d could accelerate both hypocotyl elongation and root growth of Eclipta prostrata even at the concentration of <2.5 ppm. This unique and easily accessible scaffold will be of prime importance in achieving agrochemical candidates with the novel scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号