首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium–sulfur (Li–S) batteries have received extensive attention as one of the most promising next‐generation energy storage systems, mainly because of their high theoretical energy density and low cost. However, the practical application of Li–S batteries has been hindered by technical obstacles arising from the polysulfide shuttle effect and poor electronic conductivity of sulfur and discharge products. Therefore, it is of profound significance for understanding the underlying reaction mechanism of Li–S batteries to circumvent these problems and improve the overall battery performance. Advanced characterization techniques, especially synchrotron‐based X‐ray techniques, have been widely applied to the mechanistic understanding of Li–S batteries. Specifically, in situ/operando synchrotron‐based techniques allows chemical and structural evolution to be directly observed under real operation conditions. Here, recent progress in the understanding of the operating principles of Li–S batteries based on in situ/operando synchrotron‐based techniques, including X‐ray absorption spectroscopy, X‐ray diffraction, and X‐ray microscopy, is reviewed. The aim of this progress report is to provide a comprehensive treatise on in situ/operando synchrotron‐based techniques for mechanism understanding of Li–S batteries, and thereby provide guidance for optimizing their overall electrochemical performances.  相似文献   

2.
The device performance of organic polymer:fullerene bulk heterojunction solar cells strongly depends on the interpenetrating network of the involved donor and acceptor materials in the active layer. Since morphology formation depends on the conditions of film preparation, the final morphology varies for different deposition methods. In order to understand and optimize industrial coating processes and, therefore, the performance of the solar cells produced, a deeper understanding of structure formation is important. In situ measurements of slot‐die printed polymer:fullerene active layers are presented that reveal insights into the evolution of the structure. Polymer crystallization and ordering is monitored by in situ grazing incidence wide angle X‐ray scattering (GIWAXS), and in situ grazing incidence small‐angle X‐ray scattering (GISAXS). The development of the morphology exhibits five stages independent of the drying conditions. Two growth rates are observed, an initial slow formation of poly(3‐hexylthiophene‐2,5‐diyl) crystallites in well‐aligned edge‐on orientation followed by a rapid crystal growth. By combining the GIWAXS and GISAXS measurements, a five‐stage growth and assembly process is found and described in detail along with a proposed model of the structural evolution. The findings are an important step in tailoring the assembly process.  相似文献   

3.
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.  相似文献   

4.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

5.
Ion intercalation is an important way to improve the energy storage performance of 2D materials. The dynamic energy storage process in such layered intercalations is important but still a challenge mainly due to the lack of effective operando methods. Herein, a unique atomic Sn4+–decorated vanadium carbide (V2C) MXene not only exhibiting highly enhanced lithium‐ion battery (LIB) performance, but also possessing outstanding rate and cyclic stability because of the expanded interlayer space and the formation of V? O? Sn bonding is demonstrated. In combination with ex situ tests, an operando X‐ray absorption fine structure measurement is developed to explore the dynamic mechanism of V2C@Sn MXene electrodes in LIBs. The results clearly reveal the valence changes of vanadium (V), tin (Sn), and positive contribution of oxygen (O) atoms during the charging/discharging process, confirming their contribution for lithium storage capacity. The stability of intercalated MXene electrode is further in situ studied to prove the key role of V? O? Sn bonding.  相似文献   

6.
Triggering oxygen‐related activity is demonstrated as a promising strategy to effectively boost energy density of layered cathodes for sodium‐ion batteries. However, irreversible lattice oxygen loss will induce detrimental structure distortion, resulting in voltage decay and cycle degradation. Herein, a layered structure P2‐type Na0.66Li0.22Ru0.78O2 cathode is designed, delivering reversible oxygen‐related and Ru‐based redox chemistry simultaneously. Benefiting from the combination of strong Ru 4d‐O 2p covalency and stable Li location within the transition metal layer, reversible anionic/cationic redox chemistry is achieved successfully, which is proved by systematic bulk/surface analysis by in/ex situ spectroscopy (operando Raman and hard X‐ray absorption spectroscopy, etc.). Moreover, the robust structure and reversible phase transition evolution revealed by operando X‐ray diffraction further establish a high degree reversible (de)intercalation processes (≈150 mAh g?1, reversible capacity) and long‐term cycling (average capacity drop of 0.018%, 500 cycles).  相似文献   

7.
Small angle solution X‐ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero‐assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X‐ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two‐component systems such as a nucleoprotein or a lipid‐protein assembly. Time‐resolved small and wide‐angle solution scattering to study biological processes in real time, and the use of localized heavy‐atom labeling and anomalous solution scattering for applications as FRET‐like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X‐ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.  相似文献   

8.
The search for superior‐energy‐density electrode materials for rechargeable batteries is prompted by the continuously growing demand for new electric vehicles and large energy‐storage grids. The structural properties of electrode materials affect their electrochemical performance because their functionality is correlated to their structure at the atomic scale. Although challenging, a deeper and comprehensive understanding of the basic structural operating units of electrode materials may contribute to the advancement of new energy‐storage technologies and many other technologies. Therefore, we must strategically control both the structure and kinetics of electrode materials to achieve optimal electrochemical performance. In this contribution, advancements in synchrotron radiation techniques, specifically in situ/operando experiments on electrode materials for rechargeable batteries, are presented and discussed. Indeed, the latest synchrotron radiation methods offer deeper insights into pristine and chemically modified electrode materials, opening new opportunities to optimize these materials and exploit new technologies. In particular, the most recent results from in situ/operando synchrotron radiation measurements, which play a critical role in the fundamental understanding of the kinetics processes that occur in rechargeable batteries, are discussed.  相似文献   

9.
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.  相似文献   

10.
Controlling the surface and interface properties of halide perovskites (HaPs) materials is key to improve performance and stability of HaP‐based optoelectronic devices such as solar cells. Here, an overview is given on the use of different photoemission spectroscopy (PES) techniques as a tool kit to investigate chemical and electronic properties of surfaces and interfaces in research on HaP compounds. The primary focus of the article is X‐ray photoelectron spectroscopy (XPS), hard X‐ray photoemission spectroscopy (HAXPES), ultraviolet photoemission spectroscopy (UPS), and inverse photoemission spectroscopy (IPES), highlighting the importance of good practices during PES measurements. Starting from the working principles of PES, critical measurement conditions are discussed. In particular, the exposure of the HaP surface to vacuum and high energy radiation can cause accelerated ageing, degradation, and also ionic migration in the sample. The impact of these changes on the electronic and chemical properties is discussed, followed by an analysis of the specific challenges encountered when performing PES measurements of HaPs. These include the deviation from pristine surface conditions, determination of “soft” band edges, and assessment of band bending. The review concludes by emphasizing good practices for PES measurements of HaP samples and outlining the scope of operando type measurements to capture the transient behavior of HaPs in the experiment.  相似文献   

11.
Understanding defects in Cu(In,Ga)(Se,S)2 (CIGS), especially correlating changes in the film formation process with differences in material properties, photovoltaic (PV) device performance, and defect levels extracted from admittance spectroscopy, is a critical but challenging undertaking due to the complex nature of this polycrystalline compound semiconductor. Here we present a systematic comparative study wherein varying defect density levels in CIGS films were intentionally induced by growing CIGS grains using different selenium activity levels. Material characterization results by techniques including X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, secondary ion mass spectrometry, X‐ray photoelectron spectroscopy, and medium energy ion scattering indicate that this process variation, although not significantly affecting CIGS grain structure, crystal orientation, or bulk composition, leads to enhanced formation of a defective chalcopyrite layer with high density of indium or gallium at copper antisite defects ((In, Ga)Cu) near the CIGS surface, for CIGS films grown with insufficient selenium supply. This defective layer or the film growth conditions associated with it is further linked with observed current‐voltage characteristics, including rollover and crossover behavior, and a defect state at around 110 meV (generally denoted as the N1 defect) commonly observed in admittance spectroscopy. The impact of the (In, Ga)Cu defects on device PV performance is also established.  相似文献   

12.
Recent advances in high‐resolution 3D X‐ray computed tomography (CT) allow detailed, non‐destructive 3D structural mapping of a complete lithium‐ion battery. By repeated 3D image acquisition (time lapse CT imaging) these investigations of material microstructure are extended into the fourth dimension (time) to study structural changes of the device in operando. By digital volume correlation (DVC) of successive 3D images the dimensional changes taking place during charge cycling are quantified at the electrode level and at the Mn2O4 particle scale. After battery discharging, the extent of lithiation of the manganese (III/IV) oxide grains in the electrode is found to be a function of the distance from the battery terminal with grains closest to the electrode/current collector interface having the greatest expansion (≈30%) and grains furthest from the current collector and closest to the counter electrode showing negligible dilation. This implies that the discharge is limited by electrical conductivity. This new CT+DVC technique is widely applicable to the 3D exploration of the microstructural degradation processes for a range of energy materials including fuel cells, capacitors, catalysts, and ceramics.  相似文献   

13.
Nanosized hollandite‐type VO1.75(OH)0.5 is introduced as a novel cathode material for Na‐ion batteries. Structural investigation based on X‐ray diffraction and Rietveld refinement suggests the presence of numerous vacant sites for Na+ intercalation in the VO1.75(OH)0.5 structure. All of the possible Na+ sites and tunnel‐type Na+ diffusion pathways along the c‐axis are confirmed by bond‐valence‐sum analyses. The nanosized hollandite‐type VO1.75(OH)0.5 delivers an unexpectedly high specific capacity of ≈351 mAh g?1 at 15.5 mA g?1 in the voltage range of 1.0–3.7 V (vs Na+/Na), which agrees well with the results predicted by first‐principles calculations. In addition, combined studies using first‐principles calculations and several experimental techniques including in situ operando X‐ray diffraction and ex situ X‐ray absorption spectroscopy confirm that the nanosized hollandite‐type VO1.75(OH)0.5 undergoes a single‐phase reaction with a capacity retention of 71% over 200 cycles. Furthermore, the open structure and nanosized particles of hollandite‐type VO1.75(OH)0.5 contribute to its excellent power capability with 56% of the capacity measured at 0.05 C being delivered at 7 C.  相似文献   

14.
The ratio of the donor and acceptor components in bulk heterojunction (BHJ) organic solar cells is a key parameter for achieving optimal power conversion efficiency (PCE). However, it has been recently found that a few BHJ blends have compositional tolerance and achieve high performance in a wide range of donor to acceptor ratios. For instance, the X2 :PC61BM system, where X2 is a molecular donor of intermediate dimensions, exhibits a PCE of 6.6%. Its PCE is relatively insensitive to the blend ratio over the range from 7:3 to 4:6. The effect of blend ratio of X2 /PC61BM on morphology and device performance is therefore systematically investigated by using the structural characterization techniques of energy‐filtered transmission energy microscopy (EF‐TEM), resonant soft X‐ray scattering (R‐SoXS) and grazing incidence wide angle X‐ray scattering (GIWAXS). Changes in blend ratio do not lead to obvious differences in morphology, as revealed by R‐SoXS and EF‐TEM. Rather, there is a smooth evolution of a connected structure with decreasing domain spacing from 8:2 to 6:4 blend ratios. Domain spacing remains constant from 6:4 to 4:6 blend ratios, which suggests the presence of continuous phases with proper domain size that may provide access for charge carriers to reach their corresponding electrodes.  相似文献   

15.
The main handicap still hindering the eventual exploitation of organometal halide perovskite‐based solar cells is their poor stability under prolonged illumination, ambient conditions, and increased temperatures. This article shows for the first time the vacuum processing of the most widely used solid‐state hole conductor (SSHC), i.e., the Spiro‐OMeTAD [2,2′,7,7′‐tetrakis (N,N‐di‐p‐methoxyphenyl‐amine) 9,9′‐spirobifluorene], and how its dopant‐free crystalline formation unprecedently improves perovskite solar cell (PSC) stability under continuous illumination by about two orders of magnitude with respect to the solution‐processed reference and after annealing in air up to 200 °C. It is demonstrated that the control over the temperature of the samples during the vacuum deposition enhances the crystallinity of the SSHC, obtaining a preferential orientation along the π–π stacking direction. These results may represent a milestone toward the full vacuum processing of hybrid organic halide PSCs as well as light‐emitting diodes, with promising impacts on the development of durable devices. The microstructure, purity, and crystallinity of the vacuum sublimated Spiro‐OMeTAD layers are fully elucidated by applying an unparalleled set of complementary characterization techniques, including scanning electron microscopy, X‐ray diffraction, grazing‐incidence small‐angle X‐ray scattering and grazing‐incidence wide‐angle X‐ray scattering, X‐ray photoelectron spectroscopy, and Rutherford backscattering spectroscopy.  相似文献   

16.
A series of F‐substituted Na2/3Ni1/3Mn2/3O2?xFx (x = 0, 0.03, 0.05, 0.07) cathode materials have been synthesized and characterized by solid‐state 19F and 23Na NMR, X‐ray photoelectron spectroscopy, and neutron diffraction. The underlying charge compensation mechanism is systematically unraveled by X‐ray absorption spectroscopy and electron energy loss spectroscopy (EELS) techniques, revealing partial reduction from Mn4+ to Mn3+ upon F‐substitution. It is revealed that not only Ni but also Mn participates in the redox reaction process, which is confirmed for the first time by EELS techniques, contributing to an increase in discharge specific capacity. The detailed structural transformations are also revealed by operando X‐ray diffraction experiments during the intercalation and deintercalation process of Na+, demonstrating that the biphasic reaction is obviously suppressed in the low voltage region via F‐substitution. Hence, the optimized sample with 0.05 mol f.u.?1 fluorine substitution delivers an ultrahigh specific capacity of 61 mAh g?1 at 10 C after 2000 cycles at 30 °C, an extraordinary cycling stability with a capacity retention of 75.6% after 2000 cycles at 10 C and 55 °C, an outstanding full battery performance with 89.5% capacity retention after 300 cycles at 1 C. This research provides a crucial understanding of the influence of F‐substitution on the crystal structure of the P2‐type materials and opens a new avenue for sodium‐ion batteries.  相似文献   

17.
Solar‐intercalation batteries, which are able to both harvest and store solar energy within the electrodes, are a promising technology for the more efficient utilization of intermittent solar radiation. However, there is a lack of understanding on how the light‐induced intercalation reaction occurs within the electrode host lattice. Here, an in operando synchrotron X‐ray diffraction methodology is introduced, which allows for real‐time visualization of the structural evolution process within a solar‐intercalation battery host electrode lattice. Coupled with ex situ material characterization, direct correlations between the structural evolution of MoO3 and the photo‐electrochemical responses of the solar‐intercalation batteries are established for the first time. MoO3 is found to transform, via a two‐phase reaction mechanism, initially into a sodium bronze phase, Na0.33MoO3, followed by the formation of solid solutions, NaxMoO3 (0.33 < x < 1.1), on further photointercalation. Time‐resolved correlations with the measured voltages indicate that the two‐phase evolution reaction follows zeroth‐order kinetics. The insights achieved from this study can aid the development of more advanced photointercalation electrodes and solar batteries with greater performances.  相似文献   

18.
Irreversible electrochemical behavior and large voltage hysteresis are commonly observed in battery materials, in particular for materials reacting through conversion reaction, resulting in undesirable round‐trip energy loss and low coulombic efficiency. Seeking solutions to these challenges relies on the understanding of the underlying mechanism and physical origins. Here, this study combines in operando 2D transmission X‐ray microscopy with X‐ray absorption near edge structure, 3D tomography, and galvanostatic intermittent titration techniques to uncover the conversion reaction in sodium–metal sulfide batteries, a promising high‐energy battery system. This study shows a high irreversible electrochemistry process predominately occurs at first cycle, which can be largely linked to Na ion trapping during the first desodiation process and large interfacial ion mobility resistance. Subsequently, phase transformation evolution and electrochemical reaction show good reversibility at multiple discharge/charge cycles due to materials' microstructural change and equilibrium. The origin of large hysteresis between discharge and charge is investigated and it can be attributed to multiple factors including ion mobility resistance at the two‐phase interface, intrinsic slow sodium ion diffusion kinetics, and irreversibility as well as ohmic voltage drop and overpotential. This study expects that such understandings will help pave the way for engineering design and optimization of materials microstructure for future‐generation batteries.  相似文献   

19.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   

20.
Operando X‐ray diffraction (XRD) and X‐ray absorption spectroscopy (XAS) studies of Ge anodes are carried out to understand the effect of cycling rate on Ge phase transformation during charge/discharge process and to relate that effect to capacity. It is discovered that the formation of crystalline Li15Ge4 (c‐Li15Ge4) during lithiation is suppressed beyond a certain cycling rate. A very stable and reversible high capacity of ≈1800 mAh g?1 can be attained up to 100 cycles at a slow C‐rate of C/21 when there is complete conversion of Ge anode into c‐Li15Ge4. When the C‐rate is increased to ≈C/10, the lithiation reaction is more heterogeneous and a relatively high capacity of ≈1000 mAh g?1 is achieved with poorer electrochemical reversibility. An increase in C‐rate to C/5 and higher reduces the capacity (≈500 mAh g?1) due to an impeded transformation from amorphous LixGe to c‐Li15Ge4, and yet improves the electrochemical reversibility. A proposed mechanism is presented to explain the C‐rate dependent phase transformations and the relationship of these to capacity fading. The operando XRD and XAS results provide new insights into the relationship between structural changes in Ge and battery capacity, which are important for guiding better design of high‐capacity anodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号