首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the familial forms of Alzheimer's disease (AD) encodes the amyloid-beta precursor protein (AbetaPP) substitution mutation V717F. This mutation is relevant to AD research, since it has been utilized to generate transgenic mice models to study AD pathology and therapeutic interventions. Amyloid beta (Abeta) peptides were obtained from the cerebral tissue of three familial AD subjects carrying the AbetaPP V717F mutation. A combination of ultracentrifugation, size-exclusion, and reverse-phase high performance liquid chromatography, tryptic and cyanogen bromide hydrolysis, amino acid analysis, and matrix-assisted laser desorption ionization and surface-enhanced laser desorption ionization mass spectrometry was used to characterize the familial AD mutant Abeta peptides. The AbetaPP V717F mutation, located 4-6 residues beyond the wild-type AbetaPP gamma-secretase cleavage site, yielded longer Abeta peptides with C termini between residues 43 and 54. In the cerebral cortex these peptides aggregated into thin water- and SDS-insoluble amyloid bundles that condensed into flocculent spherical plaques. In the leptomeningeal arteries the amyloid was deposited in moderate amounts and was primarily composed of the shorter and more soluble Abeta species ending at residues 40, 42, and 44. The single V717F mutation in AbetaPP results in distinctive and drastic changes in the length and tertiary structure of Abeta peptides, which appear to be responsible for the earlier clinical manifestations of dementia and death of these patients.  相似文献   

2.
One of the major pathological features of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques that are composed predominantly of the amyloid-beta peptide (Abeta). Diffuse plaques associated with AD are composed predominantly of Abeta42, whereas senile plaques contain both Abeta40 and Abeta42. Recently, it has been suggested that diffuse plaque formation is initiated as a plasma membrane-bound Abeta species and that Abeta42 is the critical component. In order to investigate this hypothesis, we have examined Abeta42-membrane interactions using in situ atomic force microscopy and fluorescence spectroscopy. Our studies demonstrate the association of Abeta42 with planar bilayers composed of total brain lipids, which results initially in peptide aggregation and then fibre formation. Modulation of the cholesterol content is correlated with the extent of Abeta42-assembly on the bilayer surface. Although Abeta42 was not visualized directly on cholesterol-depleted bilayers, fluorescence anisotropy and fluorimetry demonstrate Abeta42-induced membrane changes. Our results demonstrate that the composition of the lipid bilayer governs the outcome of Abeta interactions.  相似文献   

3.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

4.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

5.
Cerebral amyloid angiopathy (CAA) due to beta-amyloid (Abeta) is one of the specific pathological features of familial Alzheimer's disease. Abeta mainly consisting of 40- and 42-mer peptides (Abeta40 and Abeta42) exhibits neurotoxicity and aggregative abilities. All of the variants of Abeta40 and Abeta42 found in CAA were synthesized in a highly pure form and examined for neurotoxicity in PC12 cells and aggregative ability. All of the Abeta40 mutants at positions 22 and 23 showed stronger neurotoxicity than wild-type Abeta40. Similar tendency was observed for Abeta42 mutants at positions 22 and 23 whose neurotoxicity was 50-200 times stronger than that of the corresponding Abeta40 mutants, suggesting that these Abeta42 mutants are mainly involved in the pathogenesis of CAA. Although the aggregation of E22G-Abeta42 and D23N-Abeta42 was similar to that of wild-type Abeta42, E22Q-Abeta42 and E22K-Abeta42 aggregated extensively, supporting the clinical evidence that Dutch and Italian patients are diagnosed as hereditary cerebral hemorrhage with amyloidosis. In contrast, A21G mutation needs alternative explanation with the exception of physicochemical properties of Abeta mutants. Attenuated total reflection-Fourier transform infrared spectroscopy spectra suggested that beta-sheet content of the Abeta mutants correlates with their aggregation. However, beta-turn is also a critical secondary structure because residues at positions 22 and 23 that preferably form two-residue beta-turn significantly enhanced the aggregative ability.  相似文献   

6.
Major constituents of the amyloid plaques found in the brain of Alzheimer's patients are the 39-43 residue beta-amyloid (Abeta) peptides. Extensive in vitro as well as in vivo biochemical studies have shown that the 40- and 42-residue Abeta peptides play major roles in the neurodegenerative pathology of Alzheimer's disease. Although the two Abeta peptides share common aggregation properties, the 42-residue peptide is more amyloidogenic and more strongly associated with amyloid pathology. Thus, characterizations of the two Abeta peptides are of critical importance in understanding the molecular mechanism of Abeta amyloid formation. In this report, we present combined CD and NMR studies of the monomeric states of the two peptides under both non-amyloidogenic (<5 degrees C) and amyloid-forming conditions (>5 degrees C) at physiological pH. Our CD studies of the Abeta peptides showed that initially unfolded Abeta peptides at low temperature (<5 degrees C) gradually underwent conformational changes to more beta-sheet-like monomeric intermediate states at stronger amyloidogenic conditions (higher temperatures). Detailed residue-specific information on the structural transition was obtained by using NMR spectroscopy. Residues in the N-terminal (3-12) and 20-22 regions underwent conformational changes to more extended structures at the stronger amyloidogenic conditions. Almost identical structural transitions of those residues were observed in the two Abeta peptides, suggesting a similar amyloidogenic intermediate for the two peptides. The 42-residue Abeta (1-42) peptide was, however, more significantly structured at the C-terminal region (39-42), which may lead to the different aggregation propensity of the two peptides.  相似文献   

7.
Overwhelming evidence supports the amyloid hypothesis of Alzheimer's disease that stipulates that the relative level of the 42 amino acid beta-amyloid peptide (Abeta(42)) in relationship to Abeta(40) is critical to the pathogenesis of the disease. While it is clear that the multi-subunit gamma secretase is responsible for cleavage of the amyloid precursor protein (APP) into Abeta(42) and Abeta(40), the exact molecular mechanisms regulating the production of the various Abeta species remain elusive. To elucidate the underlying mechanisms, we replaced individual amino acid residues from positions 43 to 52 of Abeta with phenylalanine to examine the effects on the production of Abeta(40) and Abeta(42). All mutants, except for V50F, resulted in a decrease in total Abeta with a more prominent reduction in Abeta for residues 45, 48, and 51, following an every three residue repetition pattern. In addition, the mutations with the strongest reductions in total Abeta had the largest increases in the ratio of Abeta(42)/Abeta(40). Curiously, the T43F, V44F, and T48F mutations caused a striking decrease in the accumulation of membrane bound Abeta(46), albeit by a different mechanism. Our data suggest that initial cleavage of APP at the epsilon site is crucial in the generation of Abeta. The implicated sequential cleavage and an alpha-helical model may lead to a better understanding of the gamma-secretase-mediated APP processing and may also provide useful information for therapy and drug design aimed at altering Abeta production.  相似文献   

8.
Extracellular senile plaques composed predominantly of fibrillar amyloid-beta (Abeta) are a major neuropathological feature of Alzheimer's disease (AD). Genetic evidence and in vivo studies suggest that apolipoprotein E (apoE) may contribute to amyloid clearance and/or deposition. In vitro studies demonstrate that native apoE2 and E3 form an SDS-stable complex with Abeta(1-40), while apoE4 forms little such complex. Our current work extends these observations by presenting evidence that apoE3 also binds to Abeta(1-42) and with less avidity to modified species of the peptide found in senile plaque cores. These modified peptides include a form that originates at residue 3-Glu as pyroglutamyl and another with isomerization at the 1-Asp and 7-Asp positions. In addition, we used binding reactions between apoE3 and various Abeta fragments, as well as binding reactions with apoE3 and Abeta(1-40) plus Abeta fragments as competitors, to identify the domain(s) of Abeta involved in the formation of an SDS-stable complex with apoE3. Residues 13-28 of Abeta appear to be necessary, while complex formation is further enhanced by the presence of residues at the C-terminus of the peptide. These results contribute to our understanding of the biochemical basis for the SDS-stable apoE3/Abeta complex and support the hypothesis that Abeta can be transported in vivo complexed with apoE. This complex may then be cleared from the interstitial space by apoE receptors in the brain or become part of an extracellular amyloid deposit.  相似文献   

9.
Aggregation of proteins into insoluble deposits is associated with a variety of human diseases. In Alzheimer disease, the aggregation of amyloid beta (Abeta) peptides is believed to play a key role in pathogenesis. Although the 40-mer (Abeta40) is produced in vivo at higher levels than the 42-mer (Abeta42), senile plaque in diseased brains is composed primarily of Abeta42. Likewise, in vitro, Abeta42 forms fibrils more rapidly than Abeta40. The enhanced amyloidogenicity of Abeta42 could be due simply to its greater length. Alternatively, specific properties of residues Ile(41) and Ala(42) might favor aggregation. To distinguish between these two possibilities, we constructed a library of sequences in which residues 41 and 42 were randomized. The aggregation behavior of the resulting sequences was assessed using a high throughput screen, based on the finding that fusions of Abeta42 to green fluorescence protein (GFP) prevent the folding and fluorescence of GFP, whereas mutations in Abeta42 that disrupt aggregation produce green fluorescent fusions. Correlations between the sequences of Abeta42 mutants and the fluorescence of Abeta42-GFP fusions in vivo were confirmed in vitro through biophysical studies of synthetic 42-residue peptides. The data reveal a strong correlation between aggregation propensity and the hydrophobicity and beta-sheet propensities of residues at positions 41 and 42. Moreover, several mutants containing hydrophilic residues and/or beta-sheet breakers at positions 41 and/or 42 were less prone to aggregate than Abeta40 wherein these two residues are deleted entirely. Thus, properties of the side chains at positions 41 and 42, rather than length per se, cause Abeta42 to aggregate more readily than Abeta40.  相似文献   

10.
Kametani F 《FEBS letters》2004,570(1-3):73-76
Abeta is the major component of amyloid in the brain in Alzheimer's disease and is derived from Alzheimer amyloid precursor protein (APP) by sequential proteolytic cleavage involving alpha-, beta- and gamma-secretase. Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP (called the epsilon-cleavage), as well as in the middle of the membrane domain (gamma-cleavage). However, the precise relationship between gamma- and epsilon-cleavage is still unknown. In this paper, I analyzed Abeta-related peptides using immunoprecipitation and liquid chromatography ion trap mass spectrometer and found some long Abeta-related peptides, starting at Abeta residues 16Lys-23Asp and ending at 43Thr-52Leu, in the culture media of COS-1 cells and in human brain extract. These results indicated that longer Abeta-related peptides cleaved at epsilon-cleavage site were secreted under normal conditions and were dependent on the alpha-secretase cleavage products.  相似文献   

11.
Neuritic plaques of Alzheimer patients are composed of multiple protein components. Among them, the amyloid beta-peptides (Abeta) 1-40/42 and further N- and C-terminally modified fragments of Abeta are highly abundant. Most prominent are the isoaspartate (isoAsp)-Abeta peptides and pyroglutamyl (pGlu)-Abeta. While pGlu-Abeta can only be formed from an N-terminal glutamate by glutaminyl cyclase, spontaneous isoAsp-isomerization cannot occur at an N-terminal aspartate of peptides. This means that isoAsp-Abeta formation must precede proteolysis of the amyloid precursor protein (APP). Abeta generation from APP by beta- and gamma-secretases initiates the amyloid peptide aggregation and deposition process. Two aspartate proteases have been identified as secretases: BACE-1 (beta-site amyloid precursor protein cleaving enzyme) and the intramembrane gamma-secretase multiprotein complex. However, recent evidence supports more than one beta-secretase initiating this cascade. Formation of Abeta1-40/42 was predominantly studied by expression of mutated human APP sequences in cell culture and transgenic animals, generating Abeta fragments that did not contain such multiple posttranslational modifications as in Alzheimer's disease. This prompted us to investigate the catalytic turnover of Asp- or isoAsp-containing APP-derived peptide sequences by BACE-1 and cathepsin B, another potential beta-secretase. While cathepsin B is more effective than BACE-1 in processing the Asp-containing peptide derivatives, only cathepsin B can cleave the isoAsp-containing peptides, which occurs with high catalytic efficiency.  相似文献   

12.
AD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Abeta(1-40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Abeta(1-42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Abeta(1-40) fibrils revealed two well-protected regions, consistent with a structural arrangement of two beta-strands connected with a bend. This protection pattern partly resembles the pattern found in Abeta(1-42) fibrils, but the Abeta(1-40) fibrils display a significantly increased protection for the N-terminal residues Phe4-His14, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly37-Val40 show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.  相似文献   

13.
Review: modulating factors in amyloid-beta fibril formation   总被引:3,自引:0,他引:3  
Amyloid formation is a key pathological feature of Alzheimer's disease and is considered to be a major contributing factor to neurodegeneration and clinical dementia. Amyloid is found as both diffuse and senile plaques in the parenchyma of the brain and is composed primarily of the 40- to 42-residue amyloid-beta (Abeta) peptides. The characteristic amyloid fiber exhibits a high beta-sheet content and may be generated in vitro by the nucleation-dependent self-association of the Abeta peptide and an associated conformational transition from random to beta-conformation. Growth of the fibrils occurs by assembly of the Abeta seeds into intermediate protofibrils, which in turn self-associate to form mature fibers. This multistep process may be influenced at various stages by factors that either promote or inhibit Abeta fiber formation and aggregation. Identification of these factors and understanding the driving forces behind these interactions as well as the structural motifs necessary for these interactions will help to elucidate potential sites that may be targeted to prevent amyloid formation and its associated toxicity. This review will discuss some of the modulating factors that have been identified to date and their role in fibrillogenesis.  相似文献   

14.
On the nucleation of amyloid beta-protein monomer folding   总被引:1,自引:0,他引:1  
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise.  相似文献   

15.
Beta-amyloid peptide (Abeta), which is cleaved from the larger trans-membrane amyloid precursor protein, is found deposited in the brain of patients suffering from Alzheimer's disease and is linked with neurotoxicity. We report the results of studies of Abeta1-42 and the effect of metal ions (Cu2+ and Zn2+) on model membranes using 31P and 2H solid-state NMR, fluorescence and Langmuir Blodgett monolayer methods. Both the peptide and metal ions interact with the phospholipid headgroups and the effects on the lipid bilayer and the peptide structure were different for membrane incorporated or associated peptides. Copper ions alone destabilise the lipid bilayer and induced formation of smaller vesicles but when Abeta1-42 was associated with the bilayer membrane copper did not have this effect. Circular dichroism spectroscopy indicated that Abeta1-42 adopted more beta-sheet structure when incorporated in a lipid bilayer in comparison to the associated peptide, which was largely unstructured. Incorporated peptides appear to disrupt the membrane more severely than associated peptides, which may have implications for the role of Abeta in disease states.  相似文献   

16.
BACKGROUND: The amyloid beta (Abeta) peptide is a key molecule in the pathogenesis of Alzheimer's disease. Reliable methods to detect and quantify soluble forms of this peptide in human biological fluids and in model systems, such as cell cultures and transgenic animals, are of great importance for further understanding the disease mechanisms. In this study, the application of new and highly specific ELISA systems for quantification of Abeta40 and Abeta42 (Abeta peptides ending at residues 40 or 42, respectively) in human cerebrospinal fluid (CSF) are presented. MATERIALS AND METHODS: Monoclonal antibodies WO-2, G2-10 and G2-11 were thoroughly characterized by (SPOT) epitope mapping and immunoprecipitation/mass spectrometry. We determined whether aggregation affected the binding capacities of the antibodies to synthetic peptides and whether components of the CSF affected the ability of the antibodies to bind synthetic Abeta1-40 and Abeta1-42 peptides. The stability of Abeta40 and Abeta42 in CSF during different temperature conditions was also studied to optimize sample handling from lumbar puncture to Abeta assay. RESULTS: The detection range for the ELISAs were 20-250 pM. The intra-assay variations were 2% and 3%, and the inter-assay variations were 2% and 10% for Abeta40 and Abeta42, respectively. The antibodies specifically detected the expected peptides with equal affinity for soluble and fibrillar forms of the peptide. The presence of CSF obstructed the recognition of synthetic peptides by the antibodies and the immunoreactivity of endogenous CSF Abeta decreased with increasing storage time and temperature. CONCLUSIONS: This study describes highly sensitive ELISAs with thoroughly characterized antibodies for quantification of Abeta40 and Abeta42, an important tool for the understanding of the pathogenesis of Alzheimer's disease. Our results pinpoint some of the difficulties associated with Abeta quantification and emphasize the importance of using a well-documented assay.  相似文献   

17.
Abeta40 and Abeta42 are the major forms of amyloid beta peptides (Abeta) in the brain. Although Abeta42 differs from Abeta40 by only two residues, Abeta42 is much more prone to aggregation and more toxic to neurons than Abeta40. To probe whether dynamics contribute to such dramatic difference in function, backbone ps-ns dynamics of native Abeta monomers were characterized by 15N spin relaxation at 273.3 K and 800 MHz. Abeta42 aggregates much faster than Abeta40 in the NMR tube. The effect of Abeta aggregation was removed from the relaxation measurement by interleaved data collection. R1, R2 and nuclear Overhauser enhancement (NOE) values are similar in Abeta40 and Abeta42, except at the C terminus, indicating Abeta42 and Abeta40 monomers have identical global motions. Comparisons of the spectral density function J(0.87omegaH) and order parameters (S2) indicate that the Abeta42 C terminus is more rigid than the Abeta40 C terminus. At 280.4 K and 287.6 K, the Abeta42 C terminus remains more rigid than the Abeta40 C terminus, suggesting such a dynamical difference is likely present at the physiological temperature. The Abeta42 monomer likely has less configurational entropy due to restricted motion in the C terminus and may pay a smaller entropic price to form fibrils than the Abeta40 monomer. We hypothesize that the entropic difference between Abeta40 and Abeta42 monomers might partly account for the fact that Abeta42 is the major Abeta species in parenchymal senile plaques in most Alzheimer's diseased brains in spite of the predominance of Abeta40 in plasma. The increased rigidity of the Abeta42 C terminus is likely due to its pre-ordering for beta-conformation present in soluble oligomers and fibrils. The Abeta42 C terminus may therefore serve as an internal seed for aggregation.  相似文献   

18.
Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer beta-amyloid peptides (Abeta40 and Abeta42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Abeta peptides are rich in intermolecular beta-sheet, the precise secondary structure of Abeta in the aggregates remains unclear. To identify the amino acid residues involved in the beta-sheet formation, 34 proline-substituted mutants of Abeta42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in beta-sheet, whereas they are easily accommodated in beta-turn as a Pro-X corner. Among the mutants at positions 15-32, only E22P-Abeta42 extensively aggregated with stronger neurotoxicity than wild-type Abeta42, suggesting that the residues at positions 15-21 and 24-32 are involved in the beta-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Abeta42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Abeta42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Abeta42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Abeta42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the beta-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Abeta42 and Abeta40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Abeta42. The identification of the beta-sheet region of Abeta42 is a basis for designing new aggregation inhibitors of Abeta peptides.  相似文献   

19.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

20.
Transgenic mice over-expressing mutant human amyloid precursor protein have become an important tool for research on Alzheimer's disease (AD) and, in particular, for therapeutic screening. Many models have reported formation of amyloid plaques with age as is detected in AD. However, the plaques generated in transgenic mice are more soluble than human plaques. Differences in solubility may occur for a number of reasons; one proposal is the presence of murine Abeta peptides within the CNS milieu. Here, we report the interaction of human and murine Abeta peptides, Abeta40 and Abeta42, utilizing a fluorescence assay to monitor formation of mixed pre-fibrillar aggregates, electron microscopy to examine morphological characteristics and detergent solubility to monitor stability. Our results demonstrate that interspecies Abeta aggregates and fibres are readily formed and are more stable than homogenous human fibres. Furthermore, these results suggest that the presence of endogenous murine Abeta in human APP transgenic mice does not account for the increased solubility of plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号