首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.  相似文献   

2.
The RNA-induced silencing complex is a Mg2+-dependent endonuclease   总被引:10,自引:0,他引:10  
In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.  相似文献   

3.
4.
Oligoribonucleotides containing 2',5'-phosphodiester linkages have been synthesized on a solid support by the 'silyl-phosphoramidite' method. The stability of complexes formed between these oligonucleotides and complementary 3',5'-RNA strands have been studied using oligoadenylates and a variety of oligonucleotides of mixed base sequences including phosphorothioate backbones. In many cases, particularly for 2',5'-linked adenylates, the UV melting profiles are quite sharp and exhibit large hyperchromic changes. Substituting a few 3',5'-linkages with the 2',5'-linkage within an oligomer lowers the Tm of the complex and the degree of destabilization depends on the neighboring residues and neighboring linkages. The 2',5'-linked oligoribonucleotides prepared in this study exhibited remarkable selectivity for complementary single stranded RNA over DNA. For example, in 0.01 M phosphate buffer--0.10 M NaCl (pH 7.0), no association was observed between 2',5'-r(CCC UCU CCC UUC U) and its Watson-Crick DNA complement 3',5'-d(AGAAGGGAGAGGG). However, 2',5'-r(CCC UCU CCC UUC U) with its RNA complement 3',5'-r(AGAAGGGAGAGGG) forms a duplex which melts at 40 degrees C. The decamer 2',5'-r(Ap)9A forms a complex with both poly dT and poly rU but the complex [2',5'-r(Ap)9A]:[poly dT] is unstable (Tm, -1 degree C) and is seen only at high salt concentrations. In view of their unnatural character and remarkable selectivity for single stranded RNA, 2',5'-oligo-RNAs and their derivatives may find use as selective inhibitors of viral mRNA translation, and as affinity ligands for the purification of cellular RNA.  相似文献   

5.
A DNA helicase from human cells.   总被引:8,自引:6,他引:2       下载免费PDF全文
We have initiated the characterization of the DNA helicases from HeLa cells, and we have observed at least 4 molecular species as judged by their different fractionation properties. One of these only, DNA helicase I, has been purified to homogeneity and characterized. Helicase activity was measured by assaying the unwinding of a radioactively labelled oligodeoxynucleotide (17 mer) annealed to M13 DNA. The apparent molecular weight of helicase I on SDS polyacrylamide gel electrophoresis is 65 kDa. Helicase I reaction requires a divalent cation for activity (Mg2+ greater than Mn2+ greater than Ca2+) and is dependent on hydrolysis of ATP or dATP. CTP, GTP, UTP, dCTP, dGTP, dTTP, ADP, AMP and non-hydrolyzable ATP analogues such as ATP gamma S are unable to sustain helicase activity. The helicase activity has an optimal pH range between pH8.0 to pH9.0, is stimulated by KCl or NaCl up to 200mM, is inhibited by potassium phosphate (100mM) and by EDTA (5mM), and is abolished by trypsin. The unwinding is also inhibited competitively by the coaddition of single stranded DNA. The purified fraction was free of DNA topoisomerase, DNA ligase and nuclease activities. The direction of unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The enzyme also catalyses the ATP-dependent unwinding of a DNA:RNA hybrid consisting of a radioactively labelled single stranded oligodeoxynucleotide (18 mer) annealed on a longer RNA strand. The enzyme does not require a single stranded DNA tail on the displaced strand at the border of duplex regions; i.e. a replication fork-like structure is not required to perform DNA unwinding. The purification of the other helicases is in progress.  相似文献   

6.
Binding and cleavage of nucleic acids by the "hairpin" ribozyme   总被引:8,自引:0,他引:8  
B M Chowrira  J M Burke 《Biochemistry》1991,30(35):8518-8522
The "hairpin" ribozyme derived from the minus strand of tobacco ringspot virus satellite RNA [(-)sTRSV] efficiently catalyzes sequence-specific RNA hydrolysis in trans (Feldstein et al., 1989; Hampel & Triz, 1989; Haseloff & Gerlach, 1989). The ribozyme does not cleave DNA. An RNA substrate analogue containing a single deoxyribonucleotide residue 5' to the cleavage site (A-1) binds to the ribozyme efficiently but cannot be cleaved. A DNA substrate analogue with a ribonucleotide at A-1 is cleaved; thus A-1 provides the only 2'-OH required for cleavage. These results support cleavage via a transphosphorylation mechanism initiated by attack of the 2'-OH of A-1 on the scissile phosphodiester. The ribozyme discriminates between DNA and RNA in both binding and cleavage. Results indicate that the 2'-OH of A-1 functions in complex stabilization as well as cleavage. The ribozyme efficiently cleaves a phosphorothioate diester linkage, suggesting that the pro-Rp oxygen at the scissile phosphodiester does not coordinate Mg2+.  相似文献   

7.
Purification of a RNA debranching activity from HeLa cells   总被引:6,自引:0,他引:6  
The splicing of messenger RNA precursors (pre-mRNA) of eukaryotic cells involves the formation of a branched RNA intermediate known as a RNA lariat. This structure is formed in the first step of the reaction when a cleavage at the 5' splice site generates the 5' exon and a RNA species containing the intron and 3' exon in which the phosphate moiety at the 5' end of the intron is forming a 2'-5' phosphodiester bond with the 2'-hydroxyl moiety of a specific adenine residue near the 3' end of the intron forming a RNA branch with the following structure: -pA2'-pX-3'-pZ-. We have purified a debranching activity approximately 700-fold from the cytosolic fraction of HeLa cells. This activity catalyzes the hydrolysis of the 2'-5' phosphodiester bond of branched RNA structures yielding a 5'-phosphate end and a 2'-hydroxyl group at the branch attachment site. The activity possessed a sedimentation coefficient of 3.5 S. The reaction catalyzed by the purified fraction requires a divalent cation and is optimal at pH 7.0. The purified activity can efficiently hydrolyze triester trinucleotide structures (pY2'-pX-3'-pZ-) prepared by digestion of RNA lariats with nuclease P1. In contrast, a 2' phosphate monoester product (-pG2'-p 3'-pC-), formed by the wheat germ RNA ligase, was not attacked.  相似文献   

8.
A parameterizable program in Pascal was developed for VAX/VMScomputers to simulate the autoradiograms of gel-separated RNAfragments generated by partial cleavage of a folded RNA moleculeusing five specific RNases. Each screen displays the resultsof cleavage by either one enzyme or all five, with the RNA moleculelabeled at either of its ends (5' or 3'); each run is performedwith three different lengths and against a ladder containingalkaline hydrolysis products of the same RNA molecule as sizemarkers. The program should be useful for comparing actual resultswith predicted functional foldings of RNA molecules. Received on May 28, 1990; accepted on August 28, 1990  相似文献   

9.
R Levine  Y Koltin    J Kandel 《Nucleic acids research》1979,6(12):3717-3731
An in vitro nuclease activity was found to be associated with the purified killer proteins of Ustilago maydis. The proteins are effective against single stranded RNA, single and double stranded DNA. Endonucleolytic activity was confirmed by cleavage of circular molecules of 0x174 and PM2. Double stranded RNA did not appear to serve as a substrate.  相似文献   

10.
In order to study the importance of VP4 in picornavirus replication and translation, we replaced the hepatitis A virus (HAV) VP4 with the poliovirus (PV1) VP4. Using a modification of oligonucleotide site directed mutagenesis and the polymerase chain reaction (PCR), we created a subgenomic cDNA chimera of hepatitis A virus in which the precise sequences coding for HAV VP4 capsid protein were replaced by the sequences coding for the poliovirus VP4 capsid protein. The method involved the use of PCR primers corresponding to the 3' and 5' ends of the poliovirus VP4 sequence and that had HAV VP4 3' and 5' flanking sequences on their 5'ends. Single stranded DNA of 240 and 242 nt containing the 204 nt coding for the complete poliovirus VP4 were produced by using a limiting amount of one of the primers in a PCR reaction. These single stranded PCR products were used like mutagenic oligonucleotides on a single stranded phagemid containing the first 2070 bases of the HAV genome. Using this technique, we precisely replaced the HAV VP4 gene by the poliovirus VP4 gene as determined by DNA sequencing. The cDNA was transcribed into RNA and translated in vitro. The resulting protein could be precipitated by antibody to poliovirus VP4 but not to HAV VP4.  相似文献   

11.
12.
A self-cleaving RNA sequence from hepatitis delta virus was modified to produce a ribozyme capable of catalyzing the cleavage of RNA in an intermolecular (trans) reaction. The delta-derived ribozyme cleaved substrate RNA at a specific site, and the sequence specificity could be altered with mutations in the region of the ribozyme proposed to base pair with the substrate. A substrate target size of approximately 8 nucleotides in length was identified. Octanucleotides containing a single ribonucleotide immediately 5' to the cleavage site were substrates for cleavage, and cleavage activity was significantly reduced only with a guanine base at that position. A deoxyribose 5' to the cleavage site blocked the reaction. These data are consistent with a proposed secondary structure for the self-cleaving form of the hepatitis delta virus ribozyme in which a duplex forms with sequences 3' to the cleavage site, and they support a proposed mechanism in which cleavage involves attack on the phosphorus at the cleavage site by the adjacent 2'-hydroxyl group.  相似文献   

13.
14.
15.
The rates of hydrolysis of the following polyribonucleotides as catalysed by RNase I, an enzyme specific for single stranded RNAs, follow the sequence shown; poly (A) > 23S RNA > 5S RNA ? 16S RNA > 4S RNA = poly (I). poly (C). The rates were measured by direct spectrophotometric as well as by trichloroacetic acid precipitation methods. The extents of inhibition of RNase I-catalysed hydrolysis of poly (A) by each of the above-mentioned polyribonucleotides follow the reverse order. Taking into account the fact that double stranded RNAs are inhibitory to RNase I it may be concluded from the above results that 5S RNA has much less ordered structure than 4S RNAs. This prediction is contrary to expectations and its validity will be known when the tertiary structure of 5S RNA will be worked out. These results also indicate that 16S RNA may have more folded structure than 23S RNA.  相似文献   

16.
A guanosine to cytosine transversion at position 2 of the fifth intron of the mitochondrial gene COB blocks the ligation step of splicing. This mutation prevents the formation of a base pair within the P1 helix of this group I intron--the RNA duplex formed between the 3' end of the upstream exon and the internal guide sequence. The mutation also reduces the rate of the first step of splicing (guanosine addition at the 5' splice junction) while stimulating hydrolysis at the 3' intron-exon boundary. Consequently, the ligation of exons is blocked because the 3' exon is removed prior to cleavage at the 5' splice junction. The lesion can be suppressed by second-site mutations that preserve the potential for base-pairing at this position. Because the P1 duplex and the P10 duplex (between the guide sequence and the 3' exon) overlap at the affected pairings represent alternative structures that do not, indeed cannot, form simultaneously.  相似文献   

17.
Polycistronic pre-mRNAs from Caenohabditis elegans operons are processed by internal cleavage and polyadenylation to create 3' ends of mature mRNAs. This is accompanied by trans-splicing with SL2 approximately 100 nucleotides downstream of the 3' end formation sites to create the 5' ends of downstream mRNAs. SL2 trans-splicing depends on a U-rich element (Ur), located approximately 70 nucleotides upstream of the trans-splice site in the intercistronic region (ICR), as well as a functional 3' end formation signal. Here we report the existence of a novel gene-length RNA, the Ur-RNA, starting just upstream of the Ur element. The expression of Ur-RNA is dependent on 3' end formation as well as on the presence of the Ur element, but does not require a trans-splice site. The Ur-RNA is not capped, and alteration of the location of the Ur element in either the 5' or 3' direction alters the location of the 5' end of the Ur-RNA. We propose that a 5' to 3' exonuclease degrades the precursor RNA following cleavage at the poly(A) site, stopping when it reaches the Ur element, presumably attributable to a bound protein. Part of the function of this protein can be performed by the MS2 coat protein. Recruitment of coat protein to the ICR in the absence of the Ur element results in accumulation of an RNA equivalent to Ur-RNA, and restores trans-splicing. Only SL1, however, is used. Therefore, coat protein is sufficient for blocking the exonuclease and thereby allowing formation of a substrate for trans-splicing, but it lacks the ability to recruit the SL2 snRNP. Our results also demonstrate that MS2 coat protein can be used as an in vivo block to an exonuclease, which should have utility in mRNA stability studies.  相似文献   

18.
F Liu  S Altman 《Nucleic acids research》1996,24(14):2690-2696
M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, has been covalently linked at its 3' terminus to oligonucleotides (guide sequences) that guide the enzyme to target RNAs through hybridization with the target sequences. These constructs (M1GS RNAs) have been used to determine some minimal features of model substrates. As few as 3 bp on the 3' side of the site of cleavage in a substrate complex and 1 nt on the 5' side are required for cleavage to occur. The cytosines in the 3' terminal CCA sequence of the model substrates are important for cleavage efficiency but not cleavage site selection. A purine (base-paired or not) at the 3' side of the cleavage site is important both for cleavage site selection and efficiency. M1GS RNAs provide both a simple system for characterization of the reaction governed by M1 RNA and a tool for gene therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号