首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brindley MA  Maury W 《Journal of virology》2005,79(23):14482-14488
Recently, it has become evident that entry of some retroviruses into host cells is dependent upon a vesicle-localized, low-pH step. The entry mechanism of equine infectious anemia virus (EIAV) has yet to be examined. Here, we demonstrate that wild-type strains of EIAV require a low-pH step for productive entry. Lysosomotropic agents that inhibit the acidification of internal vesicles inhibited productive entry of EIAV. The presence of ammonium chloride (30 mM), monensin (30 microM), or bafilomycin A (50 nM) in the medium dramatically decreased the number of EIAV antigen-positive cells. We found that a low-pH step was required for EIAV infection of tissue culture cell lines as well as primary cells, such as endothelial cells and monocyte-derived macrophages. The ammonium chloride treatment did not reduce virion stability, nor did the treatment prevent virion binding to cells. Consistent with a requirement for a low-pH step, virion infectivity was enhanced more than threefold by brief low-pH treatment following binding of viral particles to permissive cells. A superinfecting variant strain of EIAV, vMA-1c, did not require a low-pH step for productive infection of fibroblasts. However, lysosomotropic agents were inhibitory to vMA-1c infection in the other cell types that vMA-1c infected but did not superinfect, indicating that the entry pathway used by vMA-1c for superinfection abrogates the need for the low-pH step.  相似文献   

2.
A novel entry mechanism has been proposed for the avian sarcoma and leukosis virus (ASLV), whereby interaction with specific cell surface receptors activates or primes the viral envelope glycoprotein (Env), rendering it sensitive to subsequent low-pH-dependent fusion triggering in acidic intracellular organelles. However, ASLV fusion seems to proceed to a lipid mixing stage at neutral pH, leading to the suggestion that low pH might instead be required for a later stage of viral entry such as uncoating (L. J. Earp, S. E. Delos, R. C. Netter, P. Bates, and J. M. White. J. Virol. 77:3058-3066, 2003). To address this possibility, hybrid virus particles were generated with the core of human immunodeficiency virus type 1 (HIV-1), a known pH-independent virus, and with subgroups A or B ASLV Env proteins. Infection of cells by these pseudotyped virions was blocked by lysosomotropic agents, as judged by inhibition of HIV-1 DNA synthesis. Furthermore, by using HIV-1 cores that contain a Vpr-beta-lactamase fusion protein (Vpr-BlaM) to monitor viral penetration into the cytosol, we demonstrated that virions bearing ASLV Env, but not HIV-1 Env, enter the cytosol in a low-pH-dependent manner. This effect was independent of the presence of the cytoplasmic tail of ASLV Env. These studies provide strong support for the model, indicating that low pH is required for ASLV Env-dependent viral penetration into the cytosol and not for viral uncoating.  相似文献   

3.
Entry of poliovirus into cells does not require a low-pH step.   总被引:20,自引:13,他引:7       下载免费PDF全文
The requirement of a low-pH step during poliovirus entry was investigated by using the macrolide antibiotic bafilomycin A1, which is a powerful and selective inhibitor of the vacuolar proton-ATPases. Thus, viruses such as Semliki Forest virus and vesicular stomatitis virus that enter cells through endosomes and need their acidification, are potently inhibited by bafilomycin A1, whereas poliovirus infection is not affected by the antibiotic. The presence of lysosomotropic agents such as chloroquine, amantadine, dansylcadaverine, and monensin during poliovirus entry did not inhibit infection, further supporting the idea that poliovirus does not depend on a low-pH step to enter the cytoplasm. The effect of bafilomycin A1 on other members of the Picornaviridae family was also assayed. Encephalomyocarditis virus entry into HeLa cells was not affected by the macrolide antibiotic, whereas rhinovirus was sensitive. Coentry of toxins, such as alpha-sarcin, with viral particles was potently inhibited by bafilomycin A1, indicating that an active vacuolar proton-ATPase is necessary for the early membrane permeabilization (coentry of alpha-sarcin) induced by poliovirus to take place.  相似文献   

4.
Using Moloney murine leukemia virus pseudovirions bearing the envelope protein of Jaagsiekte sheep retrovirus (JSRV), we report here that entry was weakly inhibited by lysosomotropic agents but was profoundly blocked by bafilomycin A1 (BafA1). Kinetics studies revealed that JSRV entry is a slow process and was substantially blocked by a dominant-negative mutant of dynamin. Interestingly, a low-pH pulse overcame the BafA1 block to JSRV infection, although this occurred only if virus-bound cells were preincubated at 37 degrees C, consistent with a very early entry event such as endocytosis being required before the low-pH-dependent step occurs. Moreover, JSRV pseudovirions were resistant to low-pH inactivation. Altogether, this study reveals that JSRV utilizes a pH-dependent, dynamin-associated endocytosis pathway for entry that differs from the classical pH-dependent entry pathway of vesicular stomatitis virus.  相似文献   

5.
Previous reports have indicated that the entry of Semliki Forest virus (SFV) into cells depends on a membrane fusion reaction catalyzed by the viral spike glycoproteins and triggered by the low pH prevailing in the endosomal compartment. In this study the in vitro pH-dependent fusion of SFV with nuclease-filled liposomes has been used to select for a new class of virus mutants that have a pH-conditional defect. The mutants obtained had a threshold for fusion of pH 5.5 as compared with the wild- type threshold of 6.2, when assayed by polykaryon formation, fusion with liposomes, or fusion at the plasma membrane. They were fully capable of infecting cells under standard infection conditions but were more sensitive to lysosomotropic agents that increase the pH in acidic vacuoles of the endocytic pathway. The mutants were, moreover, able to penetrate and infect baby hamster kidney-21 cells at 20 degrees C, indicating that the endosomes have a pH below 5.5. The results confirm the involvement of pH-triggered fusion in SFV entry, emphasize the central role played by acidic endosomal vacuoles in this reaction, shed further light on the mechanism of SFV inhibition by lysosomotropic weak bases, and demonstrate the usefulness of mutant viruses as biological pH probes of the endocytic pathway.  相似文献   

6.
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.  相似文献   

7.
Herpes simplex virus (HSV) enters some laboratory cell lines via a pH-dependent, endocytic mechanism. We investigated whether this entry pathway is used in human cell types relevant to pathogenesis. Three different classes of lysosomotropic agents, which raise endosomal pH, blocked HSV entry into primary and transformed human keratinocytes, but not into human neurons or neuroblastoma lines. In keratinocytes, incoming HSV particles colocalized with markers of endocytic uptake. Treatment with the isoflavone genistein, an inhibitor of protein tyrosine kinases, reduced the delivery of incoming viral particles to the nuclear periphery and virus-induced gene expression in keratinocytes but not neurons. Moreover, in keratinocyte monolayer islets, HSV infected both the inner and outer cells in a genistein-sensitive manner, suggesting viral endocytosis from both basolateral and apical plasma membrane surfaces. Together, the results indicate that HSV enters human epidermal keratinocytes, but not neurons, by a low-pH, endocytic pathway that is dependent on host tyrosine phosphorylation. Thus, HSV utilizes fundamentally different cellular entry pathways to infect important target cell populations.  相似文献   

8.
On the entry of semliki forest virus into BHK-21 cells   总被引:69,自引:39,他引:69       下载免费PDF全文
The pathway by which semliki forest virus (SFV), a membrane-containing animal virus, enters BHK-21 cells was studied morphologically and biochemically. After attaching to the cell surface, the majority of viruses was rapidly trapped into coated pits, internalized by endocytosis in coated vesicles, and sequestered into intracellular vacuoles and lysosomes. Direct penetration of viruses through the plasma membrane was never observed. To assess the possible involvement of lysosomes in the release of the genome into the cytoplasm, the effect of five lysosomotropic agents, known to increase the lysosomal pH, was tested. All of these agents inhibited SFV infectivity and one, chloroquine (the agent studied in most detail), inhibited a very early step in the infection but had no effect on binding, endocytosis, or intracellular distribution of SFV. Thus, the inhibitory effect was concluded to be either on penetration of the nucelocapsid into the cytoplasm or on uncoating of the viral RNA. Possible mechanisms for the penetration of the genome into the cytoplasm were studied in vitro, using phospholipids-cholesterol liposomes and isolated SFV. When the pH was 6.0 or lower, efficient fusion of the viral membranes and the liposomal membranes occurred, resulting in the transfer of the nucleocapsid into the liposomes. Infection of cells could also be induced by brief low pH treatment of cells with bound SFV under conditions where the normal infection route was blocked. The results suggest that the penetration of the viral genome into the cytosol takes place intracellularly through fusion between the limiting membrane of intracellular vacuoles and the membrane of viruses contained within them. The low pH required for fusion together with the inhibitory effect of lysosomotropic agents implicate lysosomes, or other intracellular vacuoles with sufficiently low pH, as the main sites of penetration.  相似文献   

9.
Alphavirus glycoproteins have broad host ranges. Human immunodeficiency virus type 1 (HIV-1) vectors pseudotyped with their glycoproteins could extend the range of tissues that can be transduced in both humans and animal models. Here, we established stable producer cell lines for HIV vectors pseudotyped with alphavirus Ross River virus (RRV) and Semliki Forest virus (SFV) glycoproteins E2E1. RRV E2E1-stable clones could routinely produce high-titer pseudotyped vectors for at least 5 months. SFV E2E1-stable clones, however, produced relatively low titers. We examined the properties of RRV E2E1-pseudotyped vectors [HIV-1(RRV)] and compared them with amphotropic murine leukemia virus Env- and vesicular stomatitis virus glycoprotein G-pseudotyped vectors. HIV-1(RRV) displayed a number of characteristics which would be advantageous in ex vivo and in vivo experiments, including resistance to inactivation by heat-labile components in fresh human sera and thermostability at 37 degrees C. Upon single-step concentration by ultracentrifugation of HIV-1(RRV), we could achieve vector stocks with titers up to 6 x 10(7) IU/ml. HIV-1(RRV) efficiently transduced cells from several different species, including murine primary dendritic cells, but failed to transduce human and murine T cells as well as human hematopoietic stem cells (HSC). These results indicate that HIV-1(RRV) could be used in a number of applications including animal model experiments and suggest that expression of RRV cellular receptors is limited or absent in certain cell types such as T cells and human HSC.  相似文献   

10.
Avian leukosis virus (ALV) has been used as a model system to understand the mechanism of pH-independent viral entry involving receptor-induced conformational changes in the viral envelope (Env) glycoprotein that lead to membrane fusion. Here, we report the unexpected finding that ALV entry depends on a critical low pH step that was overlooked when this virus was directly compared to the classical pH-dependent influenza A virus. In contrast to influenza A virus, receptor interaction plays an essential role in priming ALV Env for subsequent low pH triggering. Our results reveal a novel principle in viral entry, namely that receptor interaction can convert a pH-insensitive viral glycoprotein to a form that is responsive to low pH.  相似文献   

11.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

12.
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.  相似文献   

13.
The alphavirus Semliki Forest virus (SFV) and a number of other enveloped animal viruses infect cells via a membrane fusion reaction triggered by the low pH within endocytic vesicles. In addition to having a low pH requirement, SFV fusion and infection are also strictly dependent on the presence of cholesterol in the host cell membrane. A number of conformational changes in the SFV spike protein occur following low-pH treatment, including dissociation of the E1-E2 dimer, conformational changes in the E1 and E2 subunits, and oligomerization of E1 to a homotrimer. To allow the ordering of these events, we have compared the kinetics of these conformational changes with those of fusion, using pH treatment near the fusion threshold and low-temperature incubation to slow the fusion reaction. Dimer dissociation, the E1 conformational change, and E1 trimerization all occur prior to the mixing of virus and cell membranes. Studies of cells incubated at 20 degrees C showed that as with virus fusion, E1 trimerization occurred in the endosome before transport to lysosomes. However, unlike the strictly cholesterol-dependent membrane fusion reaction, the E1 homotrimer was produced in vivo during virus uptake by cholesterol-depleted cells or in vitro by low-pH treatment of virus in the presence of artificial liposomes with or without cholesterol. Purified, lipid-free spike protein rosettes were assayed to determine the requirement for virus membrane cholesterol in E1 homotrimer formation. Spike protein rosettes were found to undergo E1 oligomerization upon exposure to low pH and target liposomes and showed an enhancement of oligomerization with cholesterol-containing membranes. The E1 homotrimer may represent a perfusion complex that requires cholesterol to carry out the final coalescence of the viral and target membranes.  相似文献   

14.
In general, enveloped viruses use two different entry strategies and are classified accordingly into pH-dependent and pH-independent viruses. Different members of the retrovirus family use one or the other strategy. Little is known about the uptake of foamy viruses (FV), a special group of retroviruses, into the target cells. In this study, we examined the pH dependence of FV entry by analyzing FV envelope glycoprotein (Env)-mediated infection of target cells with murine leukemia virus or FV vector pseudotypes in the presence of various lysosomotropic agents. Similar to vesicular stomatitis virus glycoprotein G (VSV-G)-mediated uptake, FV Env-mediated entry was inhibited by various lysosomotropic agents, suggesting a pH-dependent endocytic pathway. However, in contrast to its effect on VSV-G pseudotypes, chloroquine failed to reduce the infectivity of FV Env pseudotypes, implying that the pathway is different from that of VSV-G. Glycoproteins of various other FV species showed inhibition profiles similar to that of the prototype FV (PFV) Env. Analysis of the pH dependence of the FV Env-mediated fusion process in a cell-to-cell fusion assay revealed an induction of syncytium formation by a short exposure to acidic pH, peaking around pH 5.5. Interestingly, of all FV Env species analyzed, only the PFV Env had a significant fusion activity at neutral pH. Taken together, these data suggest a pH-dependent endocytic pathway for infection of target cells by FV.  相似文献   

15.
16.
Entry of wild-type lentivirus equine infectious anemia virus (EIAV) into cells requires a low-pH step. This low-pH constraint implicates endocytosis in EIAV entry. To identify the endocytic pathway involved in EIAV entry, we examined the entry requirements for EIAV into two different cells: equine dermal (ED) cells and primary equine endothelial cells. We investigated the entry mechanism of several strains of EIAV and found that both macrophage-tropic and tissue culture-adapted strains utilize clathrin-coated pits for entry. In contrast, a superinfecting strain of EIAV, EIAVvMA-1c, utilizes two mechanisms of entry. In cells such as ED cells that EIAVvMA-1c is able to superinfect, viral entry is pH independent and appears to be mediated by plasma membrane fusion, whereas in cells where no detectable superinfection occurs, EIAVvMA-1c entry that is low-pH dependent occurs through clathrin-coated pits in a manner similar to wild-type virus. Regardless of the mechanism of entry being utilized, the internalization kinetics of EIAV is rapid with 50% of cell-associated virions internalizing within 60 to 90 min. Cathepsin inhibitors did not prevent EIAV entry, suggesting that the low-pH step required by wild-type EIAV is not required to activate cellular cathepsins.  相似文献   

17.
International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products.  相似文献   

18.
The nef gene product of human immunodeficiency virus type 1 (HIV-1) promotes more-rapid kinetics of viral replication in primary peripheral blood mononuclear cells. We have previously shown that these enhancing effects of Nef on HIV-1 replication reflect an increase in viral infectivity detectable both in limiting dilution assays and through a single-cycle infection of the HeLa-CD4-long terminal repeat-beta-galactosidase indicator cell line. We now demonstrate that nef-defective HIV-1 can be rescued to near wild-type levels of infectivity by coexpressing Nef in trans in the cell line producing the virus. This observation indicates that HIV-1 virions produced in the presence of Nef are intrinsically different. However, we show that the major viral structural proteins are quantitatively similar in purified viral preparations. We also demonstrate the functional equivalence of the gp120-gp41 envelope glycoprotein complexes of Nef+ and Nef- HIV-1 through an assay for viral entry. Finally, we show that env-defective Nef+ HIV-1 pseudotyped with an amphotropic envelope is also more infectious than similarly pseudotyped Nef- HIV-1. Thus, the production of HIV-1 in the presence of Nef results in viral particles that are more infectious, and this increased infectivity is manifested at a stage after viral entry but prior to or coincident with HIV-1 gene expression.  相似文献   

19.
The envelope of the Semliki Forest virus (SFV) contains two transmembrane proteins, E2 and E1, in a heterodimeric complex. The E2 subunit is initially synthesized as a precursor protein p62, which is proteolytically processed to the mature E2 form before virus budding at the plasma membrane. The p62 (E2) protein mediates binding of the heterodimer to the nucleocapsid during virus budding, whereas E1 carries the entry functions of the virus, that is, cell binding and low pH-mediated membrane fusion activity. We have investigated the significance of the cleavage event for the maturation and entry of the virus. To express SFV with an uncleaved p62 phenotype, BHK-21 cells were transfected by electroporation with infectious viral RNA transcribed from a full-length SFV cDNA clone in which the p62 cleavage site had been changed. The uncleaved p62E1 heterodimer was found to be used for the formation of virus particles with an efficiency comparable to the wild type E2E1 form. However, in contrast to the wild type virus, the mutant virus was virtually noninfectious. Noninfectivity resulted from impaired uptake into cells, as well as from the inability of the virus to promote membrane fusion in the mildly acidic conditions of the endosome. This inability could be reversed by mild trypsin treatment, which converted the viral p62E1 form into the mature E2E1 form, or by treating the virus with a pH 4.5 wash, which in contrast to the more mild pH conditions of endosomes, effectively disrupted the p62E1 subunit association. We conclude that the p62 cleavage is not needed for virus budding, but regulates entry functions of the E1 subunit by controlling the heterodimer stability in acidic conditions.  相似文献   

20.
The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号