首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma arginine vasopressin (AVP), ACTH, and corticosterone levels and the hypothalamic corticotropin-releasing hormone (CRH) content were measured after oral administration of 1 ml of 75% ethanol to rats, a model known to induce acute gastric erosions and stress. Elevated plasma AVP, ACTH, and corticosterone levels were detected 1 h after ethanol administration. Treatment with the vasopressin pressor (V(1)) receptor antagonist [d(CH(2))(5)Tyr(Me)-AVP] before ethanol administration significantly reduced the ACTH and corticosterone level increases. A higher hypothalamic CRH content was measured at 30 or 60 min after ethanol administration. V(1) receptor antagonist injection, 5 min before ethanol administration, inhibited the rise in hypothalamic CRH content. The protein synthesis blocker cycloheximide prevented the hypothalamic CRH content elevation after stress. The AVP-, CRH-, and AVP + CRH-induced in vitro ACTH release in normal anterior pituitary tissue cultures was also prevented by pretreatment with the V(1) receptor antagonist. The results support the hypothesis that stress-induced AVP may not only act directly on the ACTH producing anterior pituitary cells but also indirectly at the hypothalamic level via the synthesis and release of CRH.  相似文献   

2.
Brain corticotropin-releasing hormone (CRH) concentration and pituitary adreno-cortical responses were examined in chronically stressed rats: body restraint stress (6 h/day) for 4 or 5 weeks. Stressed rats showed a reduction in weight gain. CRH concentration in the median eminence and the rest of the hypothalamus were not different between control and chronically immobilized rats. The anterior pituitary adenocorticotropic hormone (ACTH) concentration was elevated in chronically stressed rats, whereas plasma ACTH and corticosterone levels did not differ from the control values. The median eminence CRH concentration was reduced to the same extent at 5 min after onset of ether exposure (1 min) in chronically immobilized rats and controls. However, plasma ACTH and corticosterone showed greater responses to ether stress in chronically immobilized rats than in control rats. Plasma ACTH and corticosterone responses to exogenous CRH were not different between control and chronically immobilized rats, while the response to arginine vasopressin (AVP) was significantly greater in chronically immobilized rats. These results suggest that chronic stress caused an increase in the ACTH-secreting mechanism and that pituitary hypersensitivity to vasopressin might at least be partly responsible for this.  相似文献   

3.
Corticotropin releasing hormone (CRH) stimulation of ACTH release and cyclic AMP-mediated events involved in the control of ACTH release were compared in sham-operated and adrenalectomized rats. CRH-stimulated adenylate cyclase activity was decreased in pituitary homogenates from adrenalectomized animals. CRH-stimulated cyclic AMP accumulation was essentially abolished and CRH-stimulated cyclic AMP-dependent protein kinase (A-kinase) activity was decreased in freshly prepared anterior pituitary cells from adrenalectomized animals. Basal and CRH-stimulated ACTH release was elevated in these cells. Since ACTH release is increased in adrenalectomized rats despite the down regulation of CRH-linked pituitary mechanisms, we speculate that the site of action of disinhibition by corticosterone of ACTH release (or synthesis) following adrenalectomy is distal to the generation of cyclic AMP and/or that non-CRH mediated mechanisms assume a greater role in ACTH regulation following adrenalectomy.  相似文献   

4.
Corticosterone and total ghrelin levels are increased in somatostatin (SST) knockout mice (Sst-/-) compared with SST-intact controls (Sst+/+). Because exogenous ghrelin can increase glucocorticoids, the question arises whether elevated levels of ghrelin contribute to elevated corticosterone levels in Sst-/- mice. We report that Sst-/- mice had elevated mRNA levels for pituitary proopiomelanocortin (POMC), the precursor of adrenocorticotropic hormone (ACTH), whereas mRNA levels for hypothalamic corticotropin-releasing hormone (CRH) did not differ from Sst+/+ mice. Furthermore, SST suppressed pituitary POMC mRNA levels and ACTH release in vitro independently of CRH actions. In contrast, it has been reported that ghrelin increases glucocorticoids via a central effect on CRH secretion and that n-octanoyl ghrelin is the form of ghrelin that activates the GHS-R1a and modulates CRH neuronal activity. Consistent with elevations in total ghrelin levels, Sst-/- mice displayed an increase in stomach ghrelin mRNA levels, whereas hypothalamic and pituitary expression of ghrelin was not altered. Despite the increase in total ghrelin levels, circulating levels of n-octanoyl ghrelin were not altered in Sst-/- mice. Because glucocorticoids and ghrelin increase in response to fasting, we examined the impact of fasting on the adrenal axis and ghrelin in Sst+/+ and Sst-/- mice and found that endogenous SST does not significantly contribute to this adaptive response. We conclude that endogenous SST inhibits basal ghrelin gene expression in a tissue specific manner and independently and directly inhibits pituitary ACTH synthesis and release. Thus endogenous SST exerts an inhibitory effect on ghrelin synthesis and on the adrenal axis through independent pathways.  相似文献   

5.
The present study investigated the role of K(+) channels in the inhibitory effect of glucocorticoid on adrenocorticotropin (ACTH) release induced by corticotropin-releasing hormone (CRH) using cultured rat anterior pituitary cells. Apamin and charybdotoxin (CTX) did not have a significant effect on ACTH release induced by CRH (1 nM). Tetraethylammonium (TEA), a broad spectrum K(+) channel blocker, increased the ACTH response to CRH only at the highest concentration (10 mM). The exposure to 100 nM corticosterone for 60 min inhibited the CRH-induced ACTH release. Neither TEA, apamin, nor CTX affected the inhibitory effect of corticosterone. In contrast, astemizole (Ast) and E-4031, ether-a-go-go-related gene (erg) K(+) channel blockers, abolished the inhibitory effect of corticosterone on CRH-induced ACTH release (1.25+/-0.10 vs. 1.45+/-0.11 ng/well at 10 microM Ast, p>0.05, 1.71+/-0.16 vs. 1.91+/-0.32 ng/well at 10 microM E-4031, p>0.05, vehicle vs. corticosterone). RT-PCR demonstrated all three subtypes of rat-erg mRNAs in the pituitary and corticosterone increased only erg1 mRNA up to 2.47+/-0.54 fold. In conclusion, erg K(+) channels were up-regulated by glucocorticoid, and have indispensable roles in delayed glucocorticoid inhibition of CRH-induced ACTH release by rat pituitary cells.  相似文献   

6.
Hypoxia is a common cause of neonatal morbidity and mortality. We have previously demonstrated a dramatic ACTH-independent activation of adrenal steroidogenesis in hypoxic neonatal rats, leading to increases in circulating corticosterone levels. The purpose of the present study was to determine if this ACTH-independent increase in corticosterone inhibits the ACTH response to acute stimuli. Neonatal rats were exposed to normoxia (control) or hypoxia from birth to 5 or 7 days of age. At the end of the exposure, plasma ACTH and corticosterone were measured before and after either ether vapors were administered for 3 min or CRH (10 microg/kg) was given intraperitoneally. Thyroid function, pituitary pro-opiomelanocortin (POMC) mRNA and ACTH content, and hypothalamic corticotropin-releasing hormone (CRH), neuropeptide Y (NPY), and AVP mRNA were also assessed. Hypoxia led to a significant increase in corticosterone without a large increase in ACTH, confirming previous studies. The ACTH responses to ether or CRH administration were almost completely inhibited in hypoxic pups. Hypoxia did not affect the established regulators of the neonatal hypothalamic-pituitary-adrenal axis, including pituitary POMC or ACTH content, hypothalamic CRH, NPY, or AVP mRNA (parvo- or magnocellular), or thyroid function. We conclude that hypoxia from birth to 5 or 7 days of age leads to an attenuated ACTH response to acute stimuli, most likely due to glucocorticoid negative feedback. The neural and biochemical mechanism of this effect has yet to be elucidated.  相似文献   

7.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

8.
9.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

10.
Nicotine is a potent stimulus for the hypothalamic-pituitary-adrenal (HPA) axis. Systemic nicotine acts via central mechanisms to stimulate by multiple pathways the release of ACTH from the anterior pituitary corticotrops and corticosterone from the adrenal cortex. Nicotine may stimulate indirectly the hypothalamic paraventricular nucleus, the site of the corticotropin-releasing hormone (CRH) neurons which activates ACTH release. In the present studies an involvement of adrenergic system and prostaglandins synthesized by constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2) in the nicotine-induced HPA response in rats was investigated. Nicotine (2.5-5 mg/kg i.p.) significantly increased plasma ACTH and corticosterone levels measured 1 hr after administration. Adrenergic receptor antagonists or COX inhibitors were injected i.p. 15 min prior to nicotine and the rats were decapitated 1 hr after the last injection. Prazosin (0.01-0.1 mg/kg), an alpha1-adrenergic antagonist, significantly decreased the nicotine-evoked ACTH and corticosterone secretion. Yohimbine (0.1-1.0 mg/kg), an alpha2-adrenergic antagonist, moderately diminished ACTH response, and propranolol (0.1-10 mg/kg), a beta-adrenergic antagonist, did not significantly alter the nicotine-induced hormones secretion. Pretreatment with piroxicam (0.2-2.0 mg/kg), a COX-1 inhibitor, considerably impaired the nicotine-induced ACTH and corticosterone secretion. Compound NS-398 (0.2-5.0 mg/kg), a selective COX-2 blocker did not markedly alter these hormones secretion, and indomethacin (2 mg/kg), a non-selective COX inhibitor significantly diminished ACTH response. These results indicate that systemic nicotine stimulates the HPA axis indirectly, and both adrenergic system and prostaglandins are significantly involved in this stimulation. Noradrenaline, stimulating postsynaptic alpha1-adrenergic receptors, and prostaglandins, synthesized by COX-1 isoenzyme, are of crucial significance in the nicotine-induced ACTH and corticosterone secretion.  相似文献   

11.
The effect of synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) on the in vivo and in vitro release of ACTH and corticosterone was examined. In the in vivo study ACTH and corticosterone responses to rapid 2-ml/rat hemorrhage were measured in sixteen conscious rats after alpha-hANP administration. The hemorrhage increased plasma ACTH and corticosterone concentrations in the control group of rats (p greater than 0.01). ANP inhibited hemorrhage-induced ACTH secretion (p less than 0.05), but the plasma corticosterone response was not affected. In the in vitro study a high concentration of ANP (1 microM) reduced basal corticosterone secretion from the isolated rat adrenal gland (p less than 0.05), but the response to ACTH (10 ng/ml) and dibutyryl cyclic AMP (0.5 mM, 5.0 mM) was not affected. Our data suggest that ANP inhibits hemorrhage-induced ACTH secretion from the anterior pituitary but inhibits corticosterone secretion from the adrenal gland very weakly.  相似文献   

12.
Apelin is the recently identified endogenous ligand for the G-protein-coupled receptor, APJ. Preproapelin and APJ mRNA are found in hypothalamic regions known to be important in the regulation of food and water intake, and pituitary hormone release. The effects of intracerebroventricular (ICV) administration of pyroglutamylated apelin-13 on food and water intake and pituitary hormone release in rats were investigated. Apelin-13 had little effect on food intake, but dose-dependently increased drinking behaviour and water intake at 1 h. Apelin-13 (10 nmol) increased water intake by up to sixfold compared to saline. Compared to saline control, apelin-13 (10 nmol) significantly increased plasma ACTH and corticosterone and decreased plasma prolactin, LH and FSH at 30 min. In vitro, apelin-13 stimulated the release of CRH and AVP from hypothalamic explants, but had no effect on NPY release. These results suggest that apelin may play an important role in the hypothalamic regulation of water intake and endocrine axes.  相似文献   

13.
Endothelin-3 (ET-3) is a member of the novel vasoconstrictive peptide family, identified in porcine central nervous system. Intravenous bolus injection of 1000 pmol/kg of ET-3 in freely moving rats caused significant increases in plasma ACTH and corticosterone levels, almost equivalent to those of 100 pmol/kg of rat corticotropin-releasing hormone (rCRH). The action of ET-3 was virtually abolished by pretreatment of CRH-antagonist, alpha-helical CRH. When ET-3 was added to cultured anterior pituitary cells, neither direct stimulation of ACTH release nor potentiation of rCRH action was noted. The results indicate that ET-3 may function as a neuropeptide and stimulation of the CRH-neurons, direct or inderect, is mainly responsible for activation of ACTH and corticosterone release.  相似文献   

14.
In the anterior pituitary gland, c-Fos expression is evoked by various stimuli. However, whether c-Fos expression is directly related to the stimulation of anterior pituitary cells by hypothalamic secretagogues is unclear. To confirm whether the reception of hormone-releasing stimuli evokes c-Fos expression in anterior pituitary cells, we have examined c-Fos expression of anterior pituitary glands in rats administered with synthetic corticotrophin-releasing hormone (CRH) intravenously or subjected to restraint stress. Single intravenous administration of CRH increases the number of c-Fos-expressing cells, and this number does not change even if the dose is increased. Double-immunostaining has revealed that most of the c-Fos-expressing cells contain adrenocorticotrophic hormone (ACTH); corticotrophs that do not express c-Fos in response to CRH have also been found. However, restraint stress evokes c-Fos expression in most of the corticotrophs and in a partial population of lactotrophs. These results suggest that c-Fos expression increases in corticotrophs stimulated by ACTH secretagogues, including CRH. Furthermore, we have found restricted numbers of corticotrophs expressing c-Fos in response to CRH. Although the mechanism underlying the different responses to CRH is not apparent, c-Fos is probably a useful immunohistochemical marker for corticotrophs stimulated by ACTH secretagogues. This work was supported by the Jichi Medical University young investigator award.  相似文献   

15.
Bilateral olfactory bulbectomy (OB) has drastic biochemical and behavioral effects and is often associated with an increase in plasma corticosterone concentrations. This experiment examined the effects of OB on adrenocorticotropin (ACTH) and corticosterone release under basal and stress conditions and on proopiomelanocortin (POMC) gene expression. Bulbectomy potentiated hypophysal ACTH and adrenal corticosterone release induced by ether stress but had no effect on ACTH release under basal conditions, despite a significant increase of circulating corticosterone. POMC gene expression was stronger (+60%) in OB rats than in sham-operated rats. These results suggest that olfactory bulbectomy substantially altered the negative feed-back exerted by glucocorticoids on anterior pituitary corticotropic cells in the male rat.  相似文献   

16.
17.
In separate experiments, nine (n = 20) and fifteen (n = 12) month old rats were treated with either 6% ethanol or 12% sucrose (to balance caloric intake) in the drinking water to examine the effect of chronic ethanol consumption on the hypothalamic-pituitary-adrenal axis of aged rats. Rats were maintained on these treatment regimens for thirty days and were killed by decapitation. Blood was collected and plasma concentrations of adrenocorticotropin (ACTH) and corticosterone were determined by radioimmunoassay. Adrenal glands were cleaned, quartered and used to test in vitro responsiveness to ACTH. Anterior pituitary glands from all 15 month old rats and one half of the nine month old rats were collected, frozen and extracted for measurement of tissue ACTH concentration. The remaining anterior pituitary glands from the nine month old rats were challenged with corticotropin releasing hormone (CRH) to test in vitro responsiveness. In nine month old rats, chronic ethanol consumption decreased plasma ACTH and corticosterone (P less than 0.05). Pituitary ACTH concentrations were unchanged in treated nine month old rats, but the amount of pituitary ACTH released in response to CRH was decreased (P less than 0.05) in rats consuming ethanol. In vitro responsiveness of the adrenal gland to ACTH in nine month old rats consuming ethanol was unchanged (P greater than 0.05). Plasma ACTH and corticosterone concentrations were also decreased in 15 month old rats chronically consuming ethanol (P less than 0.05). No differences were noted in responsiveness of the adrenal gland or in the amount of pituitary ACTH due to ethanol consumption in 15 month old rats (P greater than 0.05). The results of these experiments indicate that chronic ethanol consumption decreases hypothalamic-pituitary-adrenal function in aged rats.  相似文献   

18.
19.
The changes in the levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) in the neurointermediate lobe of the pituitary (NIL) following hypertonic saline administration were examined in rats. The plasma osmotic pressure in rats receiving 2% NaCl for 8 days was greatly increased. Plasma AVP concentration in rats receiving 2% NaCl for 8 days were significantly higher than in control rats (566% of the control level). Plasma corticosterone was significantly higher in the saline-treated rats than in controls, whereas plasma ACTH was not significantly different. The pituitary ACTH concentration was much higher in the saline-treated rats than in controls. CRH in the NIL was increased significantly by saline treatment (419% of the control concentration), whereas the CRH in the paraventricular nucleus and median eminence of control and saline-treated rats did not differ significantly. The AVP in the NIL fell greatly in saline treated rats. The extract from both control and saline-treated rats showed a major peak for immunoreactive CRH, with a retention time identical to that of rat CRH. However, the peak was much higher in the extract from saline-treated rats. The immunoreactive AVP peak was greatly reduced in saline-treated rats. These results suggest that hypertonic saline administration increases the CRH in the NIL and causes AVP hypersecretion and/or hyperfunction of magnocellular-NIL CRH might be responsible for pituitary-adrenal stimulation in saline-treated rats.  相似文献   

20.
Production of n-octanoyl-modified ghrelin (GHREL), an active form of the peptide requires prohormone processing protease and GHREL O-acyltransferase (GOAT), as well as n-octanoic acid. Recently a selective GOAT antagonist (GO-CoA-Tat) was invented and this tool was used to study the possible role of endogenous GHREL in regulating HPA axis function in the rat. Administration of GOAT inhibitor (GOATi) resulted in a notable decrease in plasma ACTH, aldosterone and corticosterone concentrations at min 60 of experiment. Octanoic acid (OA) administration had no effect on levels of studied hormones. Plasma levels of unacylated and acylated GHREL remained unchanged for 60min after either GOATi or OA administration. Under experimental conditions applied, no significant changes were observed in the levels of GOAT mRNA in hypothalamus, pituitary, adrenal and stomach fundus. After GOATi injection hypothalamic CRH mRNA levels were elevated at 30 min and pituitary POMC mRNA levels at 60 min. Both GOATi and OA lowered basal, but not K(+)-stimulated CRH release by hypothalamic explants and had no effect on basal or CRH-stimulated ACTH release by pituitary slices. Neither GOATi nor OA affected corticosterone secretion by freshly isolated or cultured rat adrenocortical cells. Thus, results of our study suggest that in the rat endogenous GHREL exerts tonic stimulating effect on hypothalamic CRH release. This effect could be demonstrated by administering rats with selected inhibitor of ghrelin O-acyltransferase, the enzyme responsible for GHREL acylation, a process which is absolutely required for both GHSR-1a binding and its central endocrine activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号