首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genome duplication is tightly controlled in multicellular organisms to ensure the genome stability. Studies in Saccharomyces cerevisiae and Xenopus show that minichromosome maintenance (MCM) proteins are essential for genome duplication. However, the development role of MCM proteins in multicellular organisms is not well known. MCM5 encodes a member of the MCM2-7 protein family involved in the initiation of DNA replication. The sequences of all Mcm5 homologues from yeast to human are highly conserved and suggest that their functions are also conserved. Here, we isolated the first mutant allele of mcm-5 (fw7) in Caenorhabditis elegans. Homozygous mcm-5 (fw7) mutants from heterozygous parents exhibited variable larval lethality and adult sterility. The postembryonically born neuron number was decreased and also showed aberrant axon morphology. Our study revealed that the losses of neurons in mcm-5 (fw7) mutants were caused by cell cycle defects not by programmed cell death. The examination showed that mcm-5 was widely used for postembryonic development in multiple cells such as seam cells, gonad and intestinal cells. Knockdown of mcm-5 by RNAi caused 98.1% embryonic arrest, suggesting that mcm-5 was also required for embryonic development. After RNAi treatment of the other MCM2-7 family members, we found that they all exhibited similar phenotypes as mcm-5, suggesting that the MCM2-7 family in C. elegans might function associated with cell division as its homologues in S. cerevisiae.  相似文献   

3.
Many cases of autosomal dominant early onset familial Alzheimer's disease result from mutations in presenilin-1 (PS1). In this study, we examined the role of the PS1 homologue gene sel-12 of Caenorhabditis elegans under oxidative stress and clarified the sel-12-induced apoptosis. A genetic null allele mutant, sel-12(ar171), showed resistance to oxidative stress and prevented mitochondrial dysfunction-induced apoptosis. On the other hand, another allele mutant, sel-12(ar131), that carries a missense mutation showed a proapoptotic activity, which may be the result of a gain of function property. Also, sel-12(ar131)-induced apoptosis was ced-3- and ced-4-dependent. Dantrolene, which specifically inhibits Ca(2+) release from endoplasmic reticulum stores, prevents sel-12(ar131)-induced apoptosis. SEL-12, which is localized in the endoplasmic reticulum, may induce apoptosis through abnormal calcium release from the endoplasmic reticulum. Together, with the previous finding that human PS1 could substitute for SEL-12, these results suggest the similar involvement of PS1-inducing apoptosis under oxidative stress and mitochondrial dysfunction in the Alzheimer's Disease brain.  相似文献   

4.
冯应龙 《生命科学》2003,15(4):238-242
早期线虫胚胎提供了一个研究发育过程的极佳模型。线虫胚胎的第一次分裂是不对称的,产生的两个子细胞在尺度的大小和发育命运上均有不同,而这些不同是由第一次有丝分裂周期中胞质决定子的不均匀分布造成的。通常相信,在受精过程中,精子所携带的中心体介导了对极性建成至关重要的胞质流动的产生。同时,细胞骨架成分被认为参与了胞质成分的定位事件。关于par基因的研究目前进展迅速,大多数par基因的突变都导致了线虫早期胚胎分裂不对称性的丧失。  相似文献   

5.
Guanine nucleotide exchange factors (GEFs) regulate the activity of small GTP-binding proteins in a variety of biological processes. We have identified a gain-of-function mutation in the Caenorhabditis elegans GEF ect-2, the homologue of the mammalian ect2 proto-oncogene that has an essential role during cytokinesis. Here, we report that, in addition to its known function during mitosis, ECT-2 promotes the specification of the primary vulval cell fate by activating RAS/mitogen-activated protein kinase (MAPK) signalling before the end of the S-phase. Epistasis analysis indicates that ECT-2 crosstalks to the canonical RAS/MAPK cascade upstream of the RAS GEF SOS-1 by means of a RHO-1 signalling pathway. Our results raise the possibility that the transforming activity of the mammalian ect-2 oncogene could be due to hyperactivation of the RAS/MAPK pathway.  相似文献   

6.
Mammalian WASP and N-WASP are involved in reorganization of the actin cytoskeleton through activation of the Arp2/3 complex and in regulation of cell motility or cell shape changes. In the present study, we identified WASP-interacting protein homologue (WIP)-1 in Caenorhabditis elegans. WIP-1 contains the domains and sequences conserved among mammalian WIP family proteins. Yeast two-hybrid analysis detected a physical interaction between WIP-1 and WSP-1, the sole homologue of WASP/N-WASP in C. elegans. Western analysis of embryo lysates showed that RNA interference (RNAi) treatment for wip-1 decreased levels of WSP-1 protein, and wsp-1(RNAi) treatment decreased levels of WIP-1 protein. However, wsp-1 mRNA levels were not decreased in wip-1(RNAi)-treated embryos, and wip-1 mRNA levels were not decreased in wsp-1(RNAi)-treated embryos. Furthermore, disruption of WIP-1 by RNAi resulted in embryonic lethality with morphologic defects in hypodermal cell migration, a process known as ventral enclosure. This phenotype was similar to that observed in RNAi experiments for wsp-1. Immunostaining showed that WIP-1 was expressed by migrating hypodermal cells, as was WSP-1. This expression during ventral enclosure was reduced in wip-1(RNAi)-treated embryos and wsp-1(RNAi)-treated embryos. Our results suggest that C. elegans WIP-1 may function in hypodermal cell migration during ventral enclosure by maintaining levels of WSP-1.  相似文献   

7.
We have developed a model system in Caenorhabditis elegans to perform genetic and molecular analysis of peptidergic neurotransmission using green fluorescent protein (GFP)-tagged IDA-1. IDA-1 represents the nematode ortholog of the transmembrane proteins ICA512 and phogrin that are localized to dense core secretory vesicles (DCVs) of mammalian neuroendocrine tissues. IDA-1::GFP was expressed in a small subset of neurons and present in both axonal and dendritic extensions, where it was localized to small mobile vesicular elements that at the ultrastructural level corresponded to 50 nm electron-dense objects in the neuronal processes. The post-translational processing of IDA-1::GFP in transgenic worms was dependent on the neuropeptide proprotein convertase EGL-3, indicating that the protein was efficiently targeted to the peptidergic secretory pathway. Time-lapse epifluorescence microscopy of IDA-1::GFP revealed that DCVs moved in a saltatory and bidirectional manner. DCV velocity profiles exhibited multiple distinct peaks, suggesting the participation of multiple molecular motors with distinct properties. Differences between velocity profiles for axonal and dendritic processes furthermore suggested a polarized distribution of the molecular transport machinery. Study of a number of candidate mutants identified the kinesin UNC-104 (KIF1A) as the microtubule motor that is specifically responsible for anterograde axonal transport of DCVs at velocities of 1.6 microm/s-2.7 microm/s.  相似文献   

8.
This review addresses the role of cell-cell interactions in the development of the Caenorhabditis elegans germ line: specifically, the relative contributions of germ-line-soma interactions versus autonomous processes are considered. Current knowledge of the interacting cell types and the genes essential for various aspects of germ-line development is discussed.  相似文献   

9.
The Caenorhabditis elegans excretory cell extends tubular processes, called canals, along the basolateral surface of the epidermis. Mutations in the exc-5 gene cause tubulocystic defects in this canal. Ultrastructural analysis suggests that exc-5 is required for the proper placement of cytoskeletal elements at the apical epithelial surface. exc-5 encodes a protein homologous to guanine nucleotide exchange factors and contains motif architecture similar to that of FGD1, which is responsible for faciogenital dysplasia. exc-5 interacts genetically with mig-2, which encodes Rho GTPase. These results suggest that EXC-5 controls the structural organization of the excretory canal by regulating Rho family GTPase activities.  相似文献   

10.
FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation.  相似文献   

11.
The WAVE/SCAR complex promotes actin nucleation through the Arp2/3 complex, in response to Rac signaling. We show that loss of WVE-1/GEX-1, the only C. elegans WAVE/SCAR homolog, by genetic mutation or by RNAi, has the same phenotype as loss of GEX-2/Sra1/p140/PIR121, GEX-3/NAP1/HEM2/KETTE, or ABI-1/ABI, the three other components of the C. elegans WAVE/SCAR complex. We find that the entire WAVE/SCAR complex promotes actin-dependent events at different times and in different tissues during development. During C. elegans embryogenesis loss of CED-10/Rac1, WAVE/SCAR complex components, or Arp2/3 blocks epidermal cell migrations despite correct epidermal cell differentiation. 4D movies show that this failure occurs due to decreased membrane dynamics in specific epidermal cells. Unlike myoblasts in Drosophila, epidermal cell fusions in C. elegans can occur in the absence of WAVE/SCAR or Arp2/3. Instead we find that subcellular enrichment of F-actin in epithelial tissues requires the Rac-WAVE/SCAR-Arp2/3 pathway. Intriguingly, we find that at the same stage of development both F-actin and WAVE/SCAR proteins are enriched apically in one epithelial tissue and basolaterally in another. We propose that temporally and spatially regulated actin nucleation by the Rac-WAVE/SCAR-Arp2/3 pathway is required for epithelial cell organization and movements during morphogenesis.  相似文献   

12.
The Deleted in Azoospermia (DAZ) gene family encodes putative translational activators that are required for meiosis and other aspects of gametogenesis in animals. The single Caenorhabditis elegans homologue of DAZ, daz-1, is an essential factor for female meiosis. Here, we show that daz-1 is important for the switch from spermatogenesis to oogenesis (the sperm/oocyte switch), which is an essential step for the hermaphrodite germline to produce oocytes. RNA interference of the daz-1 orthologue in a related nematode, Caenorhabditis briggsae, resulted in a complete loss of the sperm/oocyte switch. The C. elegans hermaphrodite deficient in daz-1 also revealed a failure in the sperm/oocyte switch if the genetic background was conditional masculinization of germline. DAZ-1 could bind specifically to mRNAs encoding the FBF proteins, which are translational regulators for the sperm/oocyte switch and germ stem cell proliferation. Expression of the FBF proteins seemed to be lowered in the daz-1 mutant at the stage for the sperm/oocyte switch. Conversely, a mutation in gld-3, a gene that functionally counteracts FBF, could partially restore oogenesis in the daz-1 mutant. Together, we propose that daz-1 plays a role upstream of the pathway for germ cell sex determination.  相似文献   

13.
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.  相似文献   

14.
Summary The fine structure of the main excretory duct epithelium of the male mouse submandibular glands was investigated by scanning and transmission electron microscopy. Three principal cell-types were observed: type I and II, and basal cells. This epithelium was characterized by the presence of intercellular canaliculi. Type-I cells were the most numerous. They had an abundance of mitochondria, well-developed Golgi apparatus, a few electron-lucent lipid-containing granules and poorly developed basal infoldings. These cells were also characterized by many glycogen granules throughout the cytoplasm and abundant smooth endoplasmic reticulum in the apical cytoplasm. Type-II cells were the second most numerous. Their most characteristic feature was the presence of abundant heterogeneous lipid-containing granules having acid phosphatase activity at the periphery. They were concentrated in the infra- and supranuclear cytoplasm. The granules may be derived from mitochondrial transformation and seem to be a special kind of secondary autolysosome. Type-II cells also contained abundant mitochondria throughout the cytoplasm, much smooth endoplasmic reticulum in the apical cytoplasm, a well developed Golgi apparatus adjacent to the heterogeneous lipid-containing granules and no basal infoldings. Basal cells were situated adjacent to the basal lamina. They had a large nucleus and the cytoplasm was filled with glycogen granules.  相似文献   

15.
The tumour suppressor gene PTEN (also called MMAC1 or TEP1) is somatically mutated in a variety of cancer types [1] [2] [3] [4]. In addition, germline mutation of PTEN is responsible for two dominantly inherited, related cancer syndromes called Cowden disease and Bannayan-Ruvalcaba-Riley syndrome [4]. PTEN encodes a dual-specificity phosphatase that inhibits cell spreading and migration partly by inhibiting integrin-mediated signalling [5] [6] [7]. Furthermore, PTEN regulates the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) by specifically dephosphorylating position 3 on the inositol ring [8]. We report here that the dauer formation gene daf-18 is the Caenorhabditis elegans homologue of PTEN. DAF-18 is a component of the insulin-like signalling pathway controlling entry into diapause and adult longevity that is regulated by the DAF-2 receptor tyrosine kinase and the AGE-1 PI 3-kinase [9]. Others have shown that mutation of daf-18 suppresses the life extension and constitutive dauer formation associated with daf-2 or age-1 mutants. Similarly, we show that inactivation of daf-18 by RNA-mediated interference mimics this suppression, and that a wild-type daf-18 transgene rescues the dauer defect. These results indicate that PTEN/daf-18 antagonizes the DAF-2-AGE-1 pathway, perhaps by catalyzing dephosphorylation of the PIP3 generated by AGE-1. These data further support the notion that mutations of PTEN contribute to the development of human neoplasia through an aberrant activation of the PI 3-kinase signalling cascade.  相似文献   

16.
BACKGROUND: Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS: We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS: BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.  相似文献   

17.
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3′-untranslated regions (3′-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.  相似文献   

18.
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.  相似文献   

19.
The role of mitochondria in the life of the nematode,Caenorhabditis elegans   总被引:2,自引:0,他引:2  
Mitochondria are essential organelles involved in energy metabolism via oxidative phosphorylation. They play a vital role in diverse biological processes such as aging and apoptosis. In humans, defects in the mitochondrial respiratory chain (MRC) are responsible for or associated with a bewildering variety of diseases. The nematode Caenorhabditis elegans is a simple animal and a powerful genetic and developmental model system. In this review, we discuss how the nematode model system has contributed to our understanding of mitochondrial dynamics, of the genetics and inheritance of the mitochondrial genome, and of the consequences of nuclear and mitochondrial DNA (mtDNA) mutations. Mitochondrial respiration is vital to energy metabolism but also to other aspects of multicellular life such as aging and development. We anticipate that further significant contributions to our understanding of mitochondrial function in animal biology are forthcoming with the C. elegans model system.  相似文献   

20.
Cadherins are one of the major families of adhesion molecules with diverse functions during embryonic development. Fat-like cadherins form an evolutionarily conserved subgroup characterized by an unusually large number of cadherin repeats in the extracellular domain. Here we describe the role of the Fat-like cadherin CDH-4 in Caenorhabditis elegans development. Cdh-4 mutants are characterized by hypodermal defects leading to incompletely penetrant embryonic or larval lethality with variable morphogenetic defects. Independently of the morphogenetic defects cdh-4 mutant animals also exhibit fasciculation defects in the ventral and dorsal cord, the major longitudinal axon tracts, as well as migration defects of the Q neuroblasts. In addition CDH-4 is essential for establishing and maintaining the attachment between the buccal cavity and the pharynx. Cdh-4 is expressed widely in most affected cells and tissues during embryogenesis suggesting that CDH-4 functions to ensure that proper cell contacts are made and maintained during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号