首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids, in addition to being structural components of cell membranes, can act as signaling molecules. Bioactive lipids, such as sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA), may act intracellularly as second messengers or be secreted and act as intercellular signaling molecules. Such molecules can affect a variety of cellular processes including apoptosis, proliferation, differentiation and motility. To investigate possible sources of bioactive lipids during development we have searched the Drosophila genome for homologs of genes involved in mammalian S1P and LPA metabolism. Here we report the developmental expression of 31 such genes by in situ hybridization to Drosophila embryos. Most show expression in specific tissues, with expression in the gut and nervous system being recurring patterns.  相似文献   

2.
Lipid phosphates initiate key signaling cascades in cell activation. Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are produced by activated platelets. LPA is also formed from circulating lysophosphatidylcholine by autotaxin, a protein involved tumor progression and metastasis. Extracellular LPA and S1P stimulate families of G-protein coupled receptors that elicit diverse responses. LPA is involved in wound repair and tumor growth. Exogenous S1P is a potent stimulator of angiogenesis, a process vital in development, tissue repair and the growth of aggressive tumors. Inside the cell, phosphatidate (PA), ceramide 1-phosphate (C1P), LPA, and S1P act as signaling molecules with distinct functions including the stimulation of cell division, cytoskeletal rearrangement, Ca(2+) transients, and membrane movement. These observations imply that phosphatases that degrade lipid phosphates on the cell surface, or inside the cell, regulate cell signaling under physiological and pathological conditions. This occurs through attenuation of signaling by the lipid phosphates and by the production of bioactive products (diacylglycerol, ceramide, and sphingosine). Three lipid phosphate phosphatases (LPPs) and a splice variant dephosphorylate LPA, PA, CIP, and S1P. Two S1P phosphatases (SPPs) act specifically on S1P. In addition, there is family of four LPP-related proteins (LPRs, or plasticity-related genes, PRGs). PRG-1 expression in neurons has been reported to increase extracellular LPA breakdown and attenuate LPA-induced axonal retraction. It is unclear whether the LRPs dephosphorylate LPA directly, stimulate LPP activity, or bind LPA and S1P. Also, the importance of extra- versus intra-cellular actions of the LPPs and SPPs, and the individual roles of different isoforms is not firmly established. Understanding the functions and regulation of the LPPs, SPPs and related proteins will hopefully contribute to interventions to correct dysfunctions in conditions such as wound repair, inflammation, angiogenesis, tumor growth, and metastasis.  相似文献   

3.
Rho-like GTPases orchestrate distinct cytoskeletal changes in response to receptor stimulation. Invasion of T-lymphoma cells into a fibroblast monolayer is induced by Tiam1, an activator of the Rho-like GTPase Rac, and by constitutively active V12Rac1. Here we show that activated V12Cdc42 can also induce invasion of T-lymphoma cells. Activated RhoA potentiates invasion, but fails by itself to mimic Rac and Cdc42. However, invasion is inhibited by the Rho-inactivating C3 transferase. Thus, RhoA is required but not sufficient for invasion. Invasion of T-lymphoma cells is critically dependent on the presence of serum. Serum can be replaced by the serum-borne lipids lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) (10(-7)-10(-6) M), which act on distinct G protein-linked receptors to activate RhoA and phospholipase C (PLC)-Ca2+ signaling. LPA- and S1P-induced invasion is preceded by Rho-dependent F-actin redistribution and pseudopodia formation. However, expression of both V14RhoA and V12Rac1 does not bypass the LPA/S1P requirement for invasion, indicating involvement of an additional signaling pathway independent of RhoA. The PLC inhibitor U-73122, but not the inactive analog U-73343, abolishes invasion. Our results indicate that T-lymphoma invasion is driven by Tiam1/Rac or Cdc42 activation, and is dependent on LPA/S1P receptor-mediated RhoA and PLC signaling pathways which lead to pseudopod formation and enhanced infiltration.  相似文献   

4.
Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are blood-borne lysophospholipids with a wide spectrum of biological activities, which include stimulation of cell growth, prevention of apoptosis, regulation of actin cytoskeleton, and modulation of cell shape, cell migration, and invasion. Activated platelets appear to be a major source of both S1P and LPA in blood. Despite the diversity of their biosynthetic origins, they are considered to share substantial structural similarity. Indeed, recent investigation has revealed that S1P and LPA act via a single family of G protein-coupled receptors designated as Edg. Thus, the Edg isoforms, Edg1 (also called S1P(1)), Edg5 (S1P(2)), Edg3 (S1P(3)), Edg6 (S1P(4)), and Edg8 (S1P(5)), are specific receptors for S1P (and SPC with a lower affinity), whereas Edg2 (LPA(1)), Edg4 (LPA(2)), and Edg7 (LPA(3)) serve as receptors specific for LPA. Each receptor isoform displays a unique tissue expression pattern and coupling to a distinct set of heterotrimeric G proteins, leading to the activation of an isoform-specific panel of multiple intracellular signaling pathways. Recent studies on knockout mice have unveiled non-redundant Edg receptor functions that are essential for normal development and vascular maturation. In addition, the Edg lysophospholipid signaling system may play a role in modulating cell motility under such pathological conditions as inflammation, tumor cell dissemination and vascular remodeling.  相似文献   

5.
6.
Lipid phosphate esters including lysophosphatidate (LPA), phosphatidate (PA), sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) are bioactive in mammalian cells and serve as mediators of signal transduction. LPA and S1P are present in biological fluids and activate cells through stimulation of their respective G-protein-coupled receptors, LPA(1-3) and S1P(1-5). LPA stimulates fibroblast division and is important in wound repair. It is also active in maintaining the growth of ovarian cancers. S1P stimulates chemotaxis, proliferation and differentiation of vascular endothelial and smooth muscle cells and is an important participant in the angiogenic response and neovessel maturation. PA and C1P are believed to act primarily inside the cell where they facilitate vesicle transport. The lipid phosphates are substrates for a family of lipid phosphate phosphatases (LPPs) that dramatically alter the signaling balance between the phosphate esters and their dephosphorylated products. In the case of PA, S1P and C1P, the products are diacylglycerol (DAG), sphingosine and ceramide, respectively. These latter lipids are also bioactive and, thus, the LPPs change signals that the cell receives. The LPPs are integral membrane proteins that act both inside and outside the cell. The "ecto-activity" of the LPPs regulates the circulating and locally effective concentrations of LPA and S1P. Conversely, the internal activity controls the relative accumulation of PA or C1P in response to stimulation by various agonists thereby affecting cell signaling downstream of EDG and other receptors. This article will review the various LPPs and discuss how these enzymes could regulate signal transduction by lipid mediators.  相似文献   

7.
Recently, a set of five brain-specifically expressed membrane proteins, which define a novel subclass of the lipid phosphate phosphatases (LPP-)superfamily, has been identified, namely plasticity-related genes (PRGs/LRPs). The primary known significance of these genes is their involvement in regeneration processes and attenuation of effects induced by lysophosphatidic acid (LPA). LPA is key player in lysophospholipids, a hydrophilic group of lipids that have been recognized as important signaling molecules. It is a lipid mediator with a wide variety of biological actions, such as cell proliferation, migration and survival. Its extracellular effects are mediated through five distinct G-protein-coupled receptors (LPA(1-5)) and LPA therefore activates multiple signal transduction pathways. LPA signaling has been implicated in diverse processes, such as wound healing, brain development, vascular remodeling and tumor progression. LPA levels are controlled by enzymes that synthesize or degrade LPA and, thus, these enzymes also regulate many aspects of signaling transduction. Three LPPs and a splice variant have been demonstrated as deactivating LPA. Studies of PRGs indicate that this group of proteins may in fact serve as controllers of LPA and therefore opening the door to new therapeutic approaches.  相似文献   

8.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

9.
The bioactive lysophospholipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have diverse effects on the developing nervous system and neural progenitors, but the molecular basis for their pleiotropic effects is poorly understood. We previously defined LPA and S1P signaling in proliferating human neural progenitor (hNP) cells, and the current study investigates their role in neuronal differentiation of these cells. Differentiation in the presence of LPA or S1P significantly enhanced cell survival and decreased expression of neuronal markers. Further, the LPA receptor antagonist Ki16425 fully blocked the effects of LPA, and differentiation in the presence of Ki16425 dramatically enhanced neurite length. LPA and S1P robustly activated Erk, but surprisingly both strongly suppressed Akt activation. Ki16425 and pertussis toxin blocked LPA activation of Erk but not LPA inhibition of Akt, suggesting distinct receptor and G-protein subtypes mediate these effects. Finally, we explored cross talk between lysophospholipid signaling and the cytokine leukemia inhibitory factor (LIF). LPA/S1P effects on neuronal differentiation were amplified in the presence of LIF. Similarly, the ability of LPA/S1P to regulate Erk and Akt was impacted by the presence of LIF; LIF enhanced the inhibitory effect of LPA/S1P on Akt phosphorylation, while LIF blunted the activation of Erk by LPA/S1P. Taken together, our results suggest that LPA and S1P enhance survival and inhibit neuronal differentiation of hNP cells, and LPA1 is critical for the effect of LPA. The pleiotropic effects of LPA may reflect differences in receptor subtype expression or cross talk with LIF receptor signaling.  相似文献   

10.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

11.
Evidence from clinical, animal and cell culture studies demonstrates that increased autotaxin (ATX) expression is responsible for enhancing tumor progression, cell migration, metastases, angiogenesis and chemo-resistance. These effects depend mainly on the rapid formation of lysophosphatidate (LPA) by ATX. Circulating LPA has a half-life of about 3 min in mice and it is degraded by the ecto-activities of lipid phosphate phosphatases (LPPs). These enzymes also hydrolyze extracellular sphingosine 1-phosphate (S1P), a potent signal for cell division, survival and angiogenesis. Many aggressive tumor cells express high ATX levels and low LPP activities. This favors the formation of locally high LPA and S1P concentrations. Furthermore, LPPs attenuate signaling downstream of the activation of G-protein coupled receptors and receptor tyrosine kinases. Therefore, we propose that the low expression of LPPs in many tumor cells makes them hypersensitive to growth promoting and survival signals that are provided by LPA, S1P, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). One of the key signaling pathways in this respect appears to be activation of phospholipase D (PLD) and phosphatidate (PA) production. This is required for the transactivations of the EGFR and PDGFR and also for LPA-induced cell migration. PA also increases the activities of ERK, mTOR, myc and sphingosine kinase-1 (SK-1), which provide individual signals for cells division, survival, chemo-resistance and angiogenesis. This review focuses on the balance of signaling by bioactive lipids including LPA, phosphatidylinositol 3,4,5-trisphosphate, PA and S1P versus the action of ceramides. We will discuss how these lipid mediators interact to produce an aggressive neoplastic phenotype.  相似文献   

12.
The bioactive lipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), the enzymes that generate and degrade them, and the receptors that receive their signals are all potential therapeutic targets in cancer. LPA and S1P signalling pathways can modulate a range of cellular processes that contribute to tumourigenesis, such as proliferation and motility, and components of the signalling pathways often show aberrant expression and altered activity upon malignant transformation. This article reviews LPA- and S1P-mediated activities that might contribute to the aetiology of cancer, and examines the potential of the many antagonists that have been developed to inhibit LPA and S1P signalling pathways. In addition, the outcomes of various clinical trials using LPA- and S1P-associated targets in cancer and other diseases are described, and future directions are discussed.  相似文献   

13.
14.
Lipid phosphate phosphatases (LPPs) are a family of integral membrane glycoproteins that catalyze the dephosphorylation of a number of bioactive lipid mediators including lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P) and phosphatidic acid (PA). These mediators exert complex effects on cell function through both actions at cell surface receptors and on intracellular targets. The LPP-catalyzed dephosphorylation of these substrates can both terminate their signaling actions and itself generate further molecules with biological activity. Recent advances have revealed that a family of structurally related genes is responsible for LPP activities in species from yeast to mammals. These genes exhibit distinct but overlapping expression patterns and their products appear to be heterogeneous with respect to their posttranslational modification and subcellular localizations. Here we review the structure and catalytic properties of the LPPs and consider recent developments in understanding their cellular biology and functions.  相似文献   

15.
Lysophospholipids and the cardiovascular system   总被引:18,自引:0,他引:18  
The lysophospholipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) have varied effects on the cardiovascular system. S1P is necessary for normal vascular development and may play an important role in angiogenesis. These molecules may exert potentially detrimental effects. Both S1P and LPA are released from activated platelets and can in turn stimulate platelet aggregation. These thrombogenic effects would further enhance ischemia in acute coronary syndromes and myocardial infarction. LPA is a major component of the lipid core of human atherosclerotic plaques and can stimulate vascular smooth muscle proliferation. Both LPA and S1P cause cardiac myocyte hypertrophy in vitro. Beneficial effects include cardioprotection both in vitro and during ischemia/reperfusion in an ex vivo whole heart mouse model. Understanding both the acute and the chronic physiologic and pathophysiologic roles of the lysophospholipids and their cognate receptors and signaling pathways in the cardiovascular system, which are likely to be species-, tissue-, and cell-specific, may allow the development of molecules that can be targeted to stimulate or inhibit a specific function.  相似文献   

16.
The lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), regulate various signaling pathways within cells by binding to multiple G protein-coupled receptors. Receptor-mediated LPA and S1P signaling induces diverse cellular responses including proliferation, adhesion, migration, morphogenesis, differentiation and survival. This review will focus on major components of lysophospholipid signaling: metabolism, identification and expression of LPA and S1P receptors, general signaling pathways and specific signaling mechanisms in mouse embryonic fibroblasts. Finally, in vivo effects of LP receptor gene deletion in mice will be discussed.  相似文献   

17.
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are potent bioactive phospholipids with specific and multiple effects on blood cells and cells of the vessel wall. Released by activated platelets, LPA and S1P mediate physiological wound healing processes such as vascular repair. Evidence is accumulating that these lipid mediators can, however, under certain conditions become athero- and thrombogenic molecules that might aggravate cardiovascular disease. For example, LPA present in minimally modified LDL and within the intima of atherosclerotic lesions may play a role in the early phase of atherosclerosis by inducing barrier dysfunction and increased monocyte adhesion of the endothelium, as well as in the late phase by triggering platelet activation and intra-arterial thrombus formation upon rupture of the atherosclerotic plaque. Moreover, LPA and S1P, by stimulating the proliferation of fibroblasts and by enhancing the survival of inflammatory cells are likely to play a central role in the excessive fibroproliferative and inflammatory response to vascular injury that characterizes the progression of atherosclerosis. Furthermore, LPA can cause the phenotypic dedifferentiation of medial vascular smooth muscle cells, and S1P is able to stimulate the migration and proliferation of intimal vascular smooth muscle cells; both processes ultimately lead to the formation of the neointima. Most importantly, as LPA and S1P bind to and activate multiple G-protein receptors, it emerges that the beneficial or harmful action of LPA and S1P are critically dependent on the expression profile of their receptor subtypes and their coupling to different signal transduction pathways in the target cells. By targeting specific subtypes of LPA and S1P receptors in selective cells of the vascular wall and blood, new strategies for the prevention and therapy of cardiovascular diseases can be envisioned.  相似文献   

18.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are extracellular ligands for a family of G protein-coupled receptors (GPCRs), LPA1/2/3 and S1P1/2/3/4/5. Through coupling to multiple classes of G proteins and activating multiple signaling pathways, LPA/S1P receptors have been shown to be integral players for many essential cellular and physiological processes. Generation and analysis of mice deficient in each of LPA1, LPA2, S1P1, S1P2, and S1P3 have provided valuable information on the in vivo roles of these receptors. This review is focussed on expression patterns of each receptor gene in wild-type mice, targeted deletion approaches for generating mutant animals, main phenotypes of receptor-null mice, and alterations in signaling characteristics in receptor-deficient primary cells. Altogether, these data give insights to the importance of LPA/S1P receptors at the cellular and organismal level.  相似文献   

19.
Lysophospholipid receptor-dependent and -independent calcium signaling   总被引:4,自引:0,他引:4  
Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.  相似文献   

20.
The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL action. In fact, the LDL-induced migration was markedly inhibited by pertussis toxin, an LPA receptor antagonist Ki-16425, and a small interfering RNA (siRNA) targeted for LPA(1) receptors. Moreover, LDL contains a higher amount of LPA than HDL does. HDL markedly inhibited LPA- and platelet-derived growth factor (PDGF)-induced migration, and sphingosine 1-phosphate (S1P), the content of which is about fourfold higher in HDL than in LDL, mimicked the HDL action. The inhibitory actions of HDL and S1P were suppressed by S1P(2) receptor-specific siRNA. On the other hand, the degradation of the LPA component of LDL by monoglyceride lipase or the antagonism of LPA receptors by Ki-16425 allowed LDL to inhibit the PDGF-induced migration. The inhibitory effect of LDL was again suppressed by S1P(2) receptor-specific siRNA. In conclusion, LPA/LPA(1) receptors and S1P/S1P(2) receptors mediate the stimulatory and inhibitory migration response to LDL and HDL, respectively. The balance of not only the content of LPA and S1P in lipoproteins but also the signaling activity between LPA(1) and S1P(2) receptors in the cells may be critical in determining whether the lipoprotein is a positive or negative regulator of CASMC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号