首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The sympathoadrenal activity was studied during baroreflex stimulation in chloralose anesthetized rats. Circulating norepinephrine (NE) and epinephrine (E) levels were used as indices of sympathetic fiber and adrenal medulla activities, respectively, under basal conditions and during a 1-min bilateral carotid occlusion (CO). In vagotomized rats, the CO induced a significant increase in mean arterial pressure (MAP) associated with an increase in circulating E levels, while this procedure did not alter blood pressure or circulating NE or E levels in intact animals. Following vagotomy, the baroreflex stimulation activated specifically the adrenal medulla, without alteration of the sympathetic fiber activity since the NE levels were not modified by the occlusion. Moreover, in support of that hypothesis, chemical sympathectomy did not decrease the pressure response to CO while bilateral adrenalectomy almost completely abolished this response. The elevation of circulating E induced by the CO was greatly potentiated by pretreatment with Yohimbine, a selective alpha 2-antagonist, and was completely abolished by administration of Clonidine, an alpha 2-agonist, while phenoxybenzamine, which is mainly an alpha 1-antagonist, did not potentiate significantly the E response to CO. These results therefore suggest that the baroreflex activation of the adrenal medulla induced by CO may be modulated in vivo via alpha 2-adrenergic receptors that could be localized on chromaffin cells.  相似文献   

2.
The concept of peripheral presynaptic regulation of neuronal norepinephrine (NE) release via alpha 2 adrenoreceptors has received extensive support from in vitro evidence. Despite this, the importance of such a system under physiological and pathophysiological conditions remains to be defined in humans. This largely reflects the limitations of using plasma NE as an index of neuronal amine release in vivo and the difficulties of interpreting the hemodynamic responses to adrenoreceptor agonists or antagonists administered in vivo. Efficient probes and sensitive indices of neuronal NE release are required to clarify the importance of peripheral presynaptic mechanisms in humans.  相似文献   

3.
With the use of circulating norepinephrine (NE) and epinephrine (E) levels, the sympathoadrenal activity as well as its local modulation by adrenoceptors were studied in normotensive (NT) and DOCA-salt hypertensive (HT) rats. In anesthetized hypertensive rats, plasma NE levels were higher, whereas in conscious animals both NE and E levels were found to be increased, suggesting an increased basal sympathoadrenal tone in these animals. The finding of a close correlation between blood pressure levels and NE levels suggests that the elevation of blood pressure may be linked to sympathetic system activity in this experimental model of hypertension. The reactivity of the sympathoadrenal system was also found to be increased in DOCA HT rats. Following a bilateral carotid occlusion of 1 min, which specifically activates the adrenal medulla, the elevation of E levels was found to be potentiated in intact or vagotomized HT rats. Moreover, in response to prolonged or acute hypotension in anesthetized and conscious animals, the elevation in plasma NE and E levels was found to be markedly potentiated in DOCA HT rats. The local modulating adrenoceptor-mediated mechanisms of the sympathoadrenal system appeared to be altered in this model of hypertension. Although it was possible to demonstrate that the E response to carotid occlusion can be greatly potentiated by administration of an alpha2-antagonist (yohimbine) and completely abolished by an alpha2-agonist (clonidine) in NT rats, the E response was found to be unaffected by the same treatments in HT rats, suggesting a reduced sensitivity in the alpha2-mediated inhibitory modulation of the adrenal medulla. Moreover, the acute treatment with a beta-blocker (sotalol) lowered circulating NE levels and blood pressure only in HT rats, suggesting the possibility of a more sensitive beta-receptor-mediated presynaptic facilitatory mechanism on sympathetic fibers of these animals. Finally, it was observed that the functional balance which exists between the activities of sympathetic fibers and the adrenal medulla in normotensive animals appears to be impaired in DOCA HT rats. In conclusion, the present studies suggest that the increased sympathoadrenal tone and reactivity may be due, in part, to a variety of dysfunctions in local adrenoceptor modulatory mechanisms of the sympathoadrenal system in DOCA hypertensive rats.  相似文献   

4.
Summary A single intraperitoneal (IP) melatonin injection (0.5 mg/100 g body wt.) caused an increase in norepinephrine (NE) fluorescence and elevation of NE content in newly-hatched pigeons (Columba livia), but a reduction of NE fluorescence and depletion of NE content in the adrenal medulla of newly-hatched crows (Corvus splendens) after 0.5 h of treatment. In contrast, in adults melatonin caused increase in NE fluorescence and elevation of NE content only in the parakeet (Psittacula krameri).Half an hour of IP melatonin treatment (0.5 mg/100 g body wt.) induced release of epinephrine (E) from the adrenal medulla of newly-hatched pigeon and parakeet. In contrast, in the adults melatonin caused more than a two-fold increase in E in the pigeon, and a significant increase in the crow.Single IP melatonin injection (0.5 mg/100 g body wt.) caused hypoglycemia in the newly-hatched parakeet and adult pigeon, and hyperglycemia in newly-hatched pigeon after 0.5 h of treatment. Melatonin failed to regulate glucose homoeostasis in newly-hatched and adult crow.Splanchnic denervation of the left adrenal gland was performed in the adult pigeon. The right adrenal served as the innervated gland. Melatonin-induced modulation of catecholamines following a single IP injection (0.5 mg/100 g body wt.) revealed significant increases in NE fluorescence and NE content at 4 and 12 h after treatment in the denervated gland only, which gradually approached normal levels 9 days after treatment. In contrast, E content showed more than a two-fold increase over the control value in both the innervated and denervated glands 0.5 and 24 h after treatment. At 9 days after treatment, E content showed significant depletion in the innervated gland.The results of this study indicate that melatonin modulates catechol hormone content in avian adrenal medulla, and also regulates glucose homoeostasis (except in the crow). The splanchnic nerve plays a vital role in the synthesis of NE but has no effect on E.  相似文献   

5.
Abstract: In this work we have studied the mechanism for the increase of adrenal ODC (ornithine decarboxylase, EC 4.1.1.17) activity provoked by oxotremorine, a muscarinic agonist. 1. Oxotremorine increased medullary ODC activity maximally at 2 h. Cortical enzyme responded much more slowly. 2. Blockade of peripheral muscarinic receptors with methylatropine partially reduced the response to oxotremorine in the medulla, but not cortex. 3. Hy-pophysectomy abolished the cortical, but not the medullary, responses to oxotremorine. Methylatropine reduced the effect of oxotremorine on medullary ODC in hypophysectomized rats. 4. In unilaterally splanchnicotomized rats oxotremorine caused an increase of ODC activity of the denervated adrenal gland relative to control value; activities in both medulla and cortex were significantly lower than those observed in the innervated gland. Evidence was obtained for a compensatory increase of ODC activity of the adrenal cortex (but not medulla) on the intact side of unilaterally operated rats. 5. Surgical intervention, in the form of a sham operation for transection of the spinal cord, leads to an increase of ODC activity in both parts of the adrenal gland. Transection of the cord attenuates these increases. 6. The additional increase of medullary ODC activity owing to the administration of oxotremorine to sham-operated rats is partially reduced in the adrenal medulla by muscarinic blockade, and completely in the cortex. This effect of methylatropine in regard to cortical ODC activity was not apparent in the other experiments with intact or unilaterally splanchnicotomized (unoperated side) rats. The results with unilaterally splanchnicotomized rats and those with transected spinal cord suggest that oxotremorine-induced modifications of adrenal ODC activity are centrally mediated, above the level of origin of the splanchnic nerves in the spinal cord (T8–10). Experiments with hypophysectomized rats show that the response of the adrenal cortex to oxotremorine is entirely mediated by the hypophysis.  相似文献   

6.
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as “presynaptic autoreceptors” in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.  相似文献   

7.
Neuronal nicotinic receptors (nAChRs) are expressed in the brain but also in the peripheral tissues including the adrenal medulla. However, it is unclear which nAChRs are present in the human adrenal medulla. In the study, receptor binding assay, Western blot and RT-PCR have been performed to investigate the expression of nAChRs in adrenal medulla from human, rat and mouse. The results showed that in human adult adrenal medulla, mRNAs for nAChR alpha3, alpha4, alpha5, alpha7, beta2, beta3, and beta4 subunits but not beta2 in the fetal human adrenal medulla were expressed. Saturation binding of [3H]epibatidine showed two binding sites in human aged adrenal medulla. The specific binding of [3H]epibatidine (0.1 nM) was significantly higher in human fetal compared to human aged adrenal medulla. mRNAs for the alpha3, alpha4, alpha5, alpha7, beta2, and beta4 subunits but not the beta3 were detectable in adult rat and mouse adrenal medulla. No differences in gene-expression of the nAChRs were observed between new born, adult and aged rat adrenal medulla. Saturation binding of [3H]epibatidine showed only one binding site in rat adrenal medulla. Lower protein levels for the nAChR subunits were observed in the rat adrenal medulla compared to rat brain. There was lower protein levels of the nAChRs in aged rat adrenal medulla compared to the young rats. Sub-chronic treatment of nicotine to rats did not influence level of the nAChRs in the adrenal medulla. In conclusion, the expression of nAChRs in adrenal medulla is age- related and species dependent.  相似文献   

8.
Activation of hepatic nerves increases both hepatic glucose production (HGP) and hepatic arterial vasoconstriction, the latter best described by a decrease of hepatic arterial conductance (HAC). Because activation of canine hepatic nerves releases the neuropeptides galanin and neuropeptide Y (NPY) as well as the classical neurotransmitter norepinephrine (NE), we sought to determine the relative role of these neuropeptides vs. norepinephrine in mediating metabolic and vascular responses of the liver. We studied the effects of local exogenous infusions of galanin and NPY on HGP and HAC to predict the metabolic and vascular function of endogenously released neuropeptide. Galanin (n = 8) or NPY (n = 4) was infused with and without NE directly into the common hepatic artery of halothane-anesthetized dogs, and we measured changes in HGP and HAC. A low dose of exogenous galanin infused directly into the hepatic artery potentiated the HGP response to NE yet had little effect on HGP when infused alone. The same dose of galanin infused into a peripheral vein (n = 8) did not potentiate the HGP response to NE, suggesting that the locally infused galanin acted directly on the liver to modulate NE's metabolic action. In contrast, a large dose of exogenous NPY failed to influence HGP when infused either alone or in combination with NE. Finally, NPY, but not galanin, tended to decrease HAC when infused alone; neither neuropeptide potentiated the HAC response to NE. Therefore, both hepatic neuropeptides may contribute to the action of sympathetic nerves on liver metabolism and blood flow. It is likely that endogenous hepatic galanin acts directly on the liver to selectively modulate norepinephrine's metabolic action, whereas endogenous hepatic NPY acts independently of NE to cause vasoconstriction.  相似文献   

9.
The reflex adjustments of the peripheral circulation in response to acute coronary occlusion were studied in anesthetized dogs with isolated vascular beds perfused at constant flow. Coronary occlusion caused significant increases in perfusion pressure which averaged 27 +/- 4 mmHg in the hindlimb, 19 +/- 8 mmHg in skeletal muscle, and 13 + 5 mmHg in the mesenteric artery. These responses were less than half those caused by a similar decrease in aortic pressure obtained with hemorrhage. Coronary occlusion caused no significant changes in renal and paw circulations, while marked vasoconstriction resulted from hemorrhage. When aortic pressure was maintained constant throughout the duration of coronary occlusion, there was a significant vasodilatation in all beds studied. After vagotomy, coronary occlusion caused a constrictor response similar in magnitude to that caused by hemorrhage in each vascular bed and the dilator responses to occlusion at constant aortic pressure were abolished. Both constrictor and dilator changes were prevented by alpha-adrenergic blockade. Mechanical distension of the left ventricle in four dogs with carotid sinus nerves cut caused a significant reflexdilatation in the hindlimb. Thus, coronary occlusion initiates an inhibitory reflex mediated by vagal afferents which opposes peripheral vasoconstriction most effectively in the renal and paw circulations.  相似文献   

10.
In the adrenergic system, release of the neurotransmitter norepinephrine from sympathetic nerves is regulated by presynaptic inhibitory alpha2-adrenoceptors, but it is unknown whether release of epinephrine from the adrenal gland is controlled by a similar short feedback loop. Using gene-targeted mice we demonstrate that two distinct subtypes of alpha2-adrenoceptors control release of catecholamines from sympathetic nerves (alpha 2A) and from the adrenal medulla (alpha 2C). In isolated mouse chromaffin cells, alpha2-receptor activation inhibited the electrically stimulated increase in cell capacitance (a correlate of exocytosis), voltage-activated Ca2+ current, as well as secretion of epinephrine and norepinephrine. The inhibitory effects of alpha2-agonists on cell capacitance, voltage-activated Ca2+ currents, and on catecholamine secretion were completely abolished in chromaffin cells isolated from alpha 2C-receptor-deficient mice. In vivo, deletion of sympathetic or adrenal feedback control led to increased plasma and urine norepinephrine (alpha 2A-knockout) and epinephrine levels (alpha 2C-knockout), respectively. Loss of feedback inhibition was compensated by increased tyrosine hydroxylase activity, as detected by elevated tissue dihydroxyphenylalanine levels. Thus, receptor subtype diversity in the adrenergic system has emerged to selectively control sympathetic and adrenal catecholamine secretion via distinct alpha2-adrenoceptor subtypes. Short-loop feedback inhibition of epinephrine release from the adrenal gland may represent a novel therapeutic target for diseases that arise from enhanced adrenergic stimulation.  相似文献   

11.
Dopamine in rat adrenal glomerulosa   总被引:1,自引:0,他引:1  
There is increasing evidence that dopamine (DA) inhibits aldosterone production, but the source of DA for this dopaminergic influence is not known. In the present study we examined the adrenal's zona glomerulosa for the presence of DA. Rats maintained on an intake of regular food were killed by decapitation and the adrenal capsule (containing zona glomerulosa) and the remainder of the gland (containing both cortex and medulla) were examined for their content of DA and also for norepinephrine (NE) and epinephrine (E). DA was found in adrenal glomerulosa in substantial quantity, 1.92 +/- 0.17 (SEM) ng/mg wet weight, representing an approximate concentration of DA of 1-100 microM. DA in adrenal capsule represented 12.2% of the total adrenal content of DA. NE and E were also present in glomerulosa, 3.46 +/- 0.32 and 18.7 +/- 2.1 ng/mg respectively, but, unlike DA, about 98% of the total adrenal content of NE and E was contained in adrenal medulla. The NE/E ratio in capsule and medulla were similar, although slightly higher in adrenal medulla, suggesting that the medulla is the source of the NE and E found in glomerulosa. On the other hand, the DA/E ratio was several-fold higher in glomerulosa than medulla--suggesting that glomerulosa DA was derived at least partially from a source other than adrenal medulla. We also found that short-term culturing of the adrenal reduced DA levels to 1/3 that observed in fresh tissue. This could explain in part why cultured glomerulosa has been shown to be more responsive to administered stimuli. In summary, the findings indicate a significant concentration of DA in adrenal glomerulosa, and suggest that the effects of DA on aldosterone production are mediated locally within the adrenal.  相似文献   

12.
Clonidine, an alpha 2-adrenergic agonist, also binds to non-adrenergic imidazole receptors in brain and peripheral tissues. In adrenal medulla, however, clonidine appears to bind only to imidazole receptors. To assess whether the signal transduction mechanism of imidazole receptors differs from alpha 2-adrenergic receptors, we studied the actions of clonidine on the turnover of phosphoinositide and the production of cAMP and cGMP in slices of rat adrenal gland. Clonidine did not modify basal or carbachol mediated increases in phosphoinositide turnover or production of cAMP, however it increased the production of cGMP. The increase in cGMP was slow and unaffected by the addition of the phosphodiesterase inhibitor, IBMX. We conclude that the second messenger response triggered by clonidine in adrenal differs from that usually coupled to alpha 2-adrenergic receptors. Whether the effect is mediated by cell surface imidazole receptors remains to be established.  相似文献   

13.
The purpose of this study was to further document the role of locally released norepinephrine (NE) in the control of metabolic and endocrine responses to exercise in rats. Post-ganglionic blockade with bretylium (20 mg.kg-1, i.v.) reduced NE release from sympathetic nerve endings and triggered a compensatory increase in epinephrine (E) release from the adrenal medulla, as reflected by plasma NE and E concentrations at rest and exercise (E/NE ratio = 2.92 +/- 0.53 and 2.48 +/- 0.51 vs 0.62 +/- 0.15 and 1.48 +/- 0.18 in control rats; mean +/- SE). Following bretylium administration a reduction in running time to exhaustion (28 m.min-1, 8% slope: 33 +/- 2 min vs 74 +/- 10 min) was associated with 1) a faster decrease in blood glucose concentration (3.58 +/- 0.80 mM vs 8.09 +/- 0.38 mM in control rats exercised for 33 min); and 2) an increased glycogen store utilization in fast-twitch muscles (superficial vastus lateralis and gastrocnemius lateralis). Glycogen utilization was not modified in soleus muscle and in the liver. Taken together these results suggest that post-ganglionic blockade increased carbohydrate store and peripheral blood glucose utilization. This could reflect an impairment in fat mobilization and utilization which might be secondary to a reduction of NE release in the adipose tissue and/or in the endocrine pancreas.  相似文献   

14.
Our previous studies concluded that stimulation of the nucleus of the solitary tract (NTS) A2a receptors evokes preferential hindlimb vasodilation mainly via inducing increases in preganglionic sympathetic nerve activity (pre-ASNA) directed to the adrenal medulla. This increase in pre-ASNA causes the release of epinephrine and subsequent activation of beta-adrenergic receptors that are preferentially located in the skeletal muscle vasculature. Selective activation of NTS A1 adenosine receptors evokes variable, mostly pressor effects and increases pre-ASNA, as well as lumbar sympathetic activity, which is directed to the hindlimb. These counteracting factors may have opposite effects on the hindlimb vasculature resulting in mixed vascular responses. Therefore, in chloralose-urethane-anesthetized rats, we evaluated the contribution of vasodilator versus vasoconstrictor effects of stimulation of NTS A1 receptors on the hindlimb vasculature. We compared the changes in iliac vascular conductance evoked by microinejctions into the NTS of the selective A1 receptor agonist N6-cyclopentyladenosine (330 pmol in 50 nl volume) in intact animals with the responses evoked after beta-adrenergic blockade, bilateral adrenalectomy, bilateral lumbar sympathectomy, and combined adrenalectomy + lumbar sympathectomy. In intact animals, stimulation of NTS A1 receptors evoked variable effects: increases and decreases in mean arterial pressure and iliac conductance with prevailing pressor and vasoconstrictor effects. Peripheral beta-adrenergic receptor blockade and bilateral adrenalectomy eliminated the depressor component of the responses, markedly potentiated iliac vasoconstriction, and tended to increase the pressor responses. Lumbar sympathectomy tended to decrease the pressor and vasoconstrictor responses. After bilateral adrenalectomy plus lumbar sympathectomy, a marked vasoconstriction in iliac vascular bed still persisted, suggesting that the vasoconstrictor component of the response to stimulation of NTS A1 receptors is mediated mostly via circulating factors (e.g., vasopressin, angiotensin II, or circulating catecholamines released from other sympathetic terminals). These data strongly suggest that stimulation of NTS A1 receptors exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and beta-adrenergic vasodilation versus vasoconstriction mediated by neural and humoral factors.  相似文献   

15.
16.
In previous studies we have shown that the alpha 2 -adrenergic receptor agonist clonidine (CLON) releases growth hormone (GH) in conscious dogs, an effect abolished by the selective alpha 2-receptor antagonist yohimbine (YOH) and by reserpine, but not by the alpha 1-receptor antagonist prazosin (1). In the present work intravenous (iv) administration of CLON in conscious dogs evoked a dose-related rise in plasma GH at doses of 2-8 /micrograms/Kg, but not at 16 and 32 /micrograms/Kg. Acute pretreatment with the selective inhibitor of norepinephrine (NE) synthesis, DU-18288, or with a potent antagonist of presynaptic alpha 2-receptors, mianserin abolished the GH rise induced by CLON (4 /micrograms/Kg iv). In contrast, a 10-day-pretreatment with YOH greatly enhanced the GH-releasing effect of CLON (2 /micrograms/Kg iv). In all these data indicate that in the dog: 1) CLON induces GH release via activation of alpha 2-adrenergic receptors; 2) these receptors are likely located on presynaptic sites [experiments with reserpine (1), DU-18288, mianserin, dose-response curve with CLON 2-32/micrograms/kg iv]; 3) the adrenergic receptors involved in GH release exhibit supersensitivity upon (YOH-induced) chronic pharmacologic denervation. In view of the inhibitory action of presynaptic alpha 2-adrenergic receptors (autoreceptors) on NE function, it may be envisioned that in the dog noradrenergic activation is inhibitory and not stimulatory to GH release.  相似文献   

17.
Elayan HH  Kennedy BP  Ziegler MG 《Life sciences》2002,70(21):2481-2491
It is generally thought that inhibition of nitric oxide synthase leads to blood pressure elevation largely through reduction in vascular levels of the vasodilator nitric oxide. However, there are several reports suggesting that NO synthase inhibitors cause adrenal epinephrine (E) release by both central and peripheral mechanisms. We investigated the role of adrenal E in the pressor effects of the nitric oxide synthase inhibitor L-NAME in the pithed rat to help distinguish central from peripherally mediated actions. L-NAME (10 mg/kg) raised both systolic and diastolic BP by about 30 mm Hg (P < .01) in the absence of exogenous electrical stimulation of sympathetic nerves. During stimulation at 10 V and frequencies of 1 or 2 Hz, systolic BP was about 70 mm Hg higher in L-NAME treated rats than in drug free stimulated rats. This enhancement of systolic BP by L-NAME was less pronounced at 5 or 10 Hz stimulation frequencies. Following these types of electrical stimulations of pithed rats, both plasma norepinephrine (NE) and E levels were dramatically elevated above resting plasma levels. L-NAME pretreatment of these electrically stimulated rats increased plasma E levels by an additional 60% and decreased NE by 18%. Acute adrenalectomy dramatically reduced plasma E levels and abolished the ability of L-NAME to enhance the pressor effect of sympathetic stimulation. In contrast, acute adrenalectomy of unstimulated pithed rats did not significantly reduce the pressor response to L-NAME. We conclude that adrenal E release may mediate much of the systolic pressor response of L-NAME in the stimulated pithed rat, but the magnitude of this effect varies with stimulation frequency. Since pithing disrupts central pathways, this induction of adrenal E release by L-NAME is a peripheral effect.  相似文献   

18.
It is controversial whether dopamine (DA) is a peripheral neurotransmitter in the cardiovascular/renal system. The endogenous concentration of DA in the heart and blood vessels is generally only a fraction (5%) of that of norepinephrine (NE). With perhaps the exception of the kidney, the majority of the evidence suggests a precursor role for this amine rather than that of a neurotransmitter. The main weakness of arguments favoring DA as a vascular neurotransmitter is relative lack of data showing selective DA release and lack of effects of selective DA antagonists on neural stimulation. However, DA receptors have been characterized in cardiovascular tissues and are of two types: DA1 receptors located on vascular smooth muscle (postjunctional), which appear to mediate relaxation of the muscle, and DA2 receptors located on sympathetic nerves (pejunctional), which inhibit NE release. These receptors are interesting and potential target sites for novel cardiovascular drug action for the treatment of hypertension and renal ischemia. Moreover, selective DA receptor agonists will be important tools in understanding the role of DA receptors in normal and disease states.  相似文献   

19.
Sun W  Han QD  Tang YM  Wang X 《生理学报》1998,50(2):227-231
降钙素基因相关肽(CGRP)从感觉神经末梢的释放受多种机制的调节。本文在离体灌流的大鼠肠系膜动脉床组织上,利用药理学工具药,研究了α2-肾上腺素受体对CGRP的基础和内毒素刺激后释放的作用。结果发现,α2-受体激动剂UK14304(3×10-6mol/L)可以显著抑制CGRP的基础释放和内毒素(1~5μg/ml)刺激后的释放,抑制幅度为22%~42%;用α2-受体拮抗剂Yohimbine(10-5mol/L)可以完全阻断UK14304的作用。结果表明突触前α2-受体对CGRP从外周阻力血管组织的释放,尤其是内毒素刺激后的释放具有抑制作用,在内毒素休克晚期,α2-受体功能减低可能介导了外周组织CGRP的过量释放。  相似文献   

20.
The family of adrenergic receptors contains nine different subtypes of G protein-coupled receptors which mediate the biological effects of adrenaline and noradrenaline. With few exceptions, the full therapeutic potential of subtype-selective therapy has not yet been explored for the group of adrenergic receptors. In the absence of sufficiently subtype-selective ligands which can distinguish between individual receptor subtypes of the adrenergic family, gene-targeted mouse models with deletions in these receptor genes have recently been generated and characterized. These genetic mouse models have helped to assign specific pharmacological effects of alpha(2)-receptor agonists or antagonists to individual receptor subtypes. However, some unexpected and novel functions of alpha(2)-adrenergic receptors were also uncovered in these mouse models: Presynaptic control of catecholamine release from adrenergic nerves in the central and sympathetic nervous system may be regulated by three different alpha(2)-receptor subtypes, alpha(2A), alpha(2B), and alpha(2C). A similar feedback loop also controls the release of catecholamines from the adrenal gland. alpha(2B)-receptors are not only involved in regulating vascular tone in the adult organism, but they are essential for the development of the vascular system of the placenta during prenatal development. The challenge will now be to generate strategies to identify whether the findings obtained in gene-targeted mice may predict the action of receptor subtype-selective drugs in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号