首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The role of Ca2+ in the adrenergic stimulation of pinealocyte cAMP and cGMP was investigated. In this tissue alpha 1-adrenoceptor activation, which by itself is without effect, potentiates beta 1-adrenergic stimulation of cAMP and cGMP 30- to 100-fold. The present results indicate that chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ influx with inorganic Ca2+ channel blockers (La3+, Co2+, Mn2+) markedly reduces the cyclic nucleotide response to norepinephrine, a mixed alpha 1- and beta-adrenergic agonist, but not to isoproterenol, a beta-adrenergic agonist. In addition, the potentiating effects of alpha 1-adrenergic agonists were mimicked by agents which elevate cytosolic Ca2+, including K+ (EC50 = 2 X 10(-2) M), ouabain (EC50 = 2 X 10(-6) M), ionomycin (EC50 = 3 X 10(-6) M), and A23187 (EC50 = 2 X 10(-6) M); each potentiated the effects of beta-adrenergic stimulation but had no effect alone. Together these results indicate that an alpha 1-adrenoceptor-stimulated Ca2+ influx is essential for norepinephrine to increase pinealocyte cAMP and cGMP.  相似文献   

2.
Recently, AGEPC (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was found to initiate contraction of ileal smooth muscle strips and to enhance Na+/Ca2+ exchange in ileal plasmalemmal vesicles. In the present study, the effects of the smooth muscle relaxant, isoproterenol, on Na+/Ca2+ exchange in rat ileal plasmalemmal vesicles was examined. In this preparation, Na+/Ca2+ exchange was stimulated 131 +/- 8% and 264 +/- 19% by addition of 50 nM and 100 nM AGEPC, respectively. Isoproterenol, a beta-adrenergic agonist, inhibited AGEPC stimulation of Na+/Ca2+ exchange in a dose- and time-dependent manner but had no effect on basal rates of Na+/Ca2+ antiport. At 1 microM, isoproterenol inhibited 86% of the Na+/Ca2+ exchange stimulated by 50 nM AGEPC. Vesicular cAMP levels were increased over 100% following the addition of 1 microM isoproterenol for 30 s. Inhibition of AGEPC-stimulated vesicular Na+/Ca2+ exchange and elevation of vesicular cAMP levels by isoproterenol was prevented by the beta-receptor antagonist propranolol (5 microM), demonstrating that these effects of isoproterenol were mediated by interaction with vesicular beta-adrenergic receptors. Additional studies with washed rabbit platelets demonstrated that isoproterenol inhibited AGEPC-induced aggregation and serotonin release. These effects of isoproterenol were dose- and time-dependent and were antagonized by propranolol. Isoproterenol had no effect on thrombin-induced aggregation and did not change appreciably platelet cAMP levels. Moreover, dibutyryl cAMP could not mimic the effect of isoproterenol to inhibit an AGEPC-induced aggregation. On a molar basis, the inhibitory effects of isoproterenol toward AGEPC action were greater in the ileal preparation than in the platelets. It is suggested that beta-adrenergic agonists may modulate AGEPC-induced ileal Na+/Ca2+ exchange and AGEPC-induced platelet aggregation through cAMP-dependent and-independent mechanisms, respectively.  相似文献   

3.
We have previously demonstrated mobilization of Ca2+ in and efflux of Rb+ (K+) from isolated hamster brown adipocytes as a consequence of norepinephrine stimulation. We have now investigated the adrenoceptor subtype specificity of these responses and found them both to be of the alpha 1-subtype. Further, we have found that the Rb+ (K+) efflux was dependent upon a primary Ca2+ mobilization event in response to the alpha 1-adrenergic stimulation, since the Rb+ efflux could also be demonstrated by the addition of the Ca2+ ionophore A23187 to the cells. The norepinephrine- and A23187-stimulated Rb+ effluxes were both inhibited by the Ca2+-dependent K+-channel blocker apamin. Apamin also significantly attenuated Ca2+ mobilization in cells in response to a submaximal concentration of norepinephrine. We conclude that alpha 1-adrenergic stimulation of brown fat cells leads to a mobilization of intracellular Ca2+ which, in itself or via other mechanisms, leads to an increase in cytosolic Ca2+ concentration which, in turn, activates a Ca2+-dependent K+ channel, leading to a K+ release from these cells. A possible role for this channel to sustain and augment the response to alpha 1-adrenergic stimulation is discussed.  相似文献   

4.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

5.
Measurements of 86Rb efflux across the apical and basal-lateral aspects of intact monolayers of 'high-resistance' MDCK cells mounted in Ussing chambers have been made. A transient increase in 86Rb efflux across both epithelial borders upon stimulation with adrenalineeeeeee or ionophore A23187 is observed. The increased 86Rb across the basal cell aspects is of greatest quantitative importance. Measurements of total cellular K+ contents by flame photometry of tissue extracts indicate a net loss of K+ following adrenalin addition. The effects of adrenalin and ionophore A23187 upon 86Rb efflux are abolished in 'Ca2+ -free' media. The properties of the Ca2+ -dependent increase in 86Rb efflux show similarities to Ca2+ -activated K+ conductances in other tissues, notably human red cells, including inhibition by quinine (1 mM), tetraethylammonium (25 mM) and insensitivity to bee venom toxin (apamin) (25 nM). Adrenalin is only effective when applied to the basal bathing solution suggesting that the receptors mediating adrenalin action are located upon the basal-lateral membranes. Half maximal stimulation of 86Rb efflux by adrenalin is observed at 9.1 X 10(-7) M. The action of various adrenergic receptor agonists and antagonists are consistent with adrenalin action being mediated by an alpha-adrenergic receptor.  相似文献   

6.
The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least partly by reducing Ca++ entry. The action of MIX is apparently mediated by cAMP.  相似文献   

7.
Vesicular preparations of sarcolemma isolated from rat myocardium possessed high ATPase (4.32 +/0 0.57 micromole/min per mg), adenylate cyclase (121 +/- 11 pmole/min per mg) and creatine kinase (1.74 +/- 0.35 micromole/min per mg) activities and a Na-Ca exchange activity specific for sodium. The ATPase activity was inhibited by digitoxigenin by 50-70% and was not changed by ouabain, EGTA, ionophore A23187 and oligomycin, thus showing the absence of mitochondrial and sarcoplasmic reticulum contaminations in the sarcolemmal preparations. The preparations consisted mostly of closed inside-out vesicles. The preparation was used to study the mechanism of Ca2+ penetration across the sarcolemmal membrane. For this purpose the vesicles were load with 45Ca2+, which relatively slowly diffused from the medium into the vesicles, and which was bound to the binding sites inside the vesicles (n = 20.5 +/- 4.6 nmoles per mg of protein, Kd approximately equal to 1.8 +/- 0.21 mM). The transmembrane movement of Ca2+ was demonstrated by the following findings: 1) the ionophore A23187 only insignificantly increased the total vesicular Ca2+ content, but strongly accelerated Ca2+ efflux from the vesicles along its concentration gradient; 2) gramicidin and osmotic shock caused a similar acceleration of Ca2+ efflux. Ca2+ efflux from these vesicles along Ca2+ concentration gradient was studied under conditions, when the extravesicular Ca2+ content was lowered due to its binding to EGTA and by dilution. The gradient of Ca2+ concentration was from 2.0 mM inside to approximately 0.1 micro M outside. The rate of 45Ca2+ efflux depended hyperbolically on the intravesicular Ca2+ efflux from the vesicles was inhibited by Mn2+, Co2+ and verapamil when they acted from the inside of the vesicles. An increase in ionophore A23187 concentration increased the efflux of Ca2+ hyperbolically and enhanced only the maximal rate of the efflux. It is concluded that the passive permeability of Ca2+ across the sarcolemmal membrane along its concentration gradient is controlled by Ca2+ binding to the membrane.  相似文献   

8.
K+ efflux has been analyzed in human erythrocytes incubated in a K+ free medium containing ouabain, bumetanide, CaCl2, and the Ca2+ ionophore A23187. In these conditions, a K+ efflux, which is exponentially dependent on the concentration of A23187 present in the medium, has been observed. This flux is almost completely abolished by either quinine or EGTA, so that, the above K+ efflux has been considered Ca2+ dependent. The effects of cAMP, and cGMP, have been tested on this flux. Ca2+ dependent K+ efflux decreases in presence of millimolar concentrations of cAMP in the medium. The addition of methyl-isobutyl-xanthine to the incubation medium containing cAMP enhances the inhibitory effect of this compound. cGMP also inhibits the Ca2+ dependent K+ efflux. Our results suggest that cyclic nucleotides may modulate the activation of Ca2+ dependent K+ channels in human erythrocytes.  相似文献   

9.
In the present study, effects of the alpha(2)- and beta-adrenoceptor agonists clonidine and isoproterenol on astrocytes in astroglial/neuronal cocultures from rat cerebral cortex were evaluated. The calcium- and potassium-sensitive dyes fura-2 and potassium-binding benzofuran isophtalate (PBFI) were used to study alterations in intracellular concentrations of calcium ([Ca(2+)](i)) and potassium ([K(+)](i)), respectively, while the perforated patch clamp technique was used to analyze transmembrane currents. Exposure to isoproterenol or clonidine elicited an immediate increase in [Ca(2+)](i) that was totally abolished in calcium-free extracellular media. Isoproterenol also decreased [K(+)](i), but clonidine did not. The reduction in [K(+)](i) was inhibited in Ca(2+)-free media. As evaluated with the perforated patch technique, isoproterenol (10(-6)-10(-4) M) induced a slowly developing and long lasting outward current that also was totally abolished in calcium-free buffer. This current was blocked by external tetraethylammonium (TEA, 10 mM) and charybdotoxin (ChTX, 10 nM), but was not affected by apamin (50 nM). The current-to-voltage (I-V) relationships for the isoproterenol-induced currents showed a markedly negative reversal potential, -96 mV+/-7, (mean+/-S.D., n=5). These results suggest that the stimulation of astroglial beta-adrenoceptors by isoproterenol opens calcium-activated potassium channels (K((Ca))). Preincubation with forskolin significantly increased the isoproterenol-induced currents compared with controls, indicating that the opening of astroglial K((Ca)) channels after beta-adrenergic stimulation not only depends on [Ca(2+)](i) but also synergistically involves the cAMP transduction system to which beta-adrenoceptors are known to be positively coupled.  相似文献   

10.
The beta-adrenergic agonist 1-isoproterenol evokes an acute (less than 5 min) stimulation of endocytosis, hexose transport and amino acid transport, measured by the temperature-sensitive uptake of HRP, 3H-DG and 14C-AIB, in mouse kidney cortex slices. This stimulation is concentration dependent and is maximal at 10(-8)-10(-7) M isoproterenol. Peroxidase cytochemistry showed that the hormonal increase in HRP uptake is confined to proximal tubules. The rapid membrane response is abolished in a calcium-free medium and by the beta-adrenergic antagonist propranolol, indicating Ca2+- and beta-adrenoreceptor-dependence. Isoproterenol (1 microM) rapidly (less than 30 sec) stimulates the influx and efflux of 45Ca in cortex slices. Isoproterenol also decreased mitochondrial 45Ca and increased soluble 45Ca. These results indicate that beta-adrenergic stimulation of membrane transport functions involves an increased influx of extracellular calcium and a mobilization of intracellular (mitochondrial) calcium. An increase in cytosolic Ca2+ concentration appears to be the regulatory signal for these membrane transport processes.  相似文献   

11.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

12.
Erythrocytes from several different species were exposed to Ca2+ and the bivalent-cation ionophore A23187. The lipid composition, morphology and K+ permeability of the treated cells were investigated. Erythrocytes from human, rat, guinea pig and rabbit (a) showed an increased concentration of 1,2-diacyl-sn-glycerol and enhanced labelling of phosphatidate with 32P, (b) underwent echinocytosis and outward vesiculation, and (c) rapidly released much of their intracellular K+. Pig cells showed only the K+ loss, and ox and sheep (high-K+) cells showed none of these Ca2+-evoked effects. All of the cells underwent stomatocytosis and inward vesiculation when treated externally with Clostridium perfringens phospholipase C. These results support the idea that there is a correlation between the asymmetric insertion of diacylglycerol (or ceramide) into the membrane and the shape-changes leading to microvesiculation, but they indicate that Ca2+-triggered K+ efflux and diacylglycerol production are unrelated events. Erythrocytes of chicken and turkey showed no Ca2+-stimulated K+ efflux. They showed slight ionophore A23187-stimulated vesiculation, but this appeared to be associated with the appearance in the membrane of ceramide rather than of diacylglycerol. Phospholipase C treatment caused very similar changes in morphology and phosphatidate labelling to those seen in mammalian erythrocytes.  相似文献   

13.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

14.
K+-stimulated 45Ca2+ uptake into intact rat brain cells was biphasic, consisting of a fast first phase and a slow second phase; the latter was Na+ dependent. Cobalt and cadmium at 10(-4) and 10(-3) M produced 19-97% block of first phase 45Ca2+ uptake, but nitrendipine (to 10(-6) M) and Bay K 8644 (to 10(-6) M) were without effect on uptake and were similarly without effect in cells prepared in the presence of ATP, cAMP, Mg2+, and protease inhibitors. The second phase of K+-stimulated 45Ca2+ uptake was inhibited by 3,4-dichlorobenzamil (IC50, 29.6 microM). Depolarization-induced 45Ca2+ uptake into intact rat brain cells occurs by at least two different mechanisms. The first phase probably represents uptake through 1,4-dihydropyridine-insensitive Ca2+ channels, while the second phase is probably due to Na+-Ca2+ exchange.  相似文献   

15.
We tested the hypothesis that somatostatin (SRIF) inhibits insulin secretion from an SV40 transformed hamster beta cell line (HIT cells) by an effect on the voltage-dependent Ca2+ channels and examined whether G-proteins were involved in the process. Ca2+ currents were recorded by the whole cell patch-clamp method, the free cytosolic calcium, [Ca2+]i, was monitored in HIT cells by fura-2, and cAMP and insulin secretion were measured by radioimmunoassay. SRIF decreased Ca2+ currents, [Ca2+]i, and basal insulin secretion in a dose-dependent manner over the range of 10(-12)-10(-7)M. The increase in [Ca2+]i and insulin secretion induced by either depolarization with K+ (15 mM) or by the Ca2+ channel agonist, Bay K 8644 (1 microM) was attenuated by SRIF in a dose-dependent manner over the same range of 10(-12)-10(-7) M. the half-maximal inhibitory concentrations (IC50) for SRIF inhibition of insulin secretion were 8.6 X 10(-12) M and 8.3 X 10(-11) M for K+ and Bay K 8644-stimulated secretion and 1 X 10(-10) M and 2.9 X 10(-10) M for the SRIF inhibition of the K+ and Bay K 8644-induced rise in [Ca2+]i, respectively. SRIF also attenuated the rise in [Ca2+]i induced by the cAMP-elevating agent, isobutylmethylxanthine (1 mM) in the presence of glucose. Bay K 8644, K+ and SRIF had no significant effects on cAMP levels and SRIF had no effects on adenylyl cyclase activity at concentrations lower than 1 microM. SRIF (100 nM) did not change K+ efflux (measured by 86Rb+) through ATP-sensitive K+ channels in HIT cells. SRIF (up to 1 microM) had no significant effect on membrane potential measured by bisoxonol fluorescence. Pretreatment of the HIT cells with pertussis toxin (0.1 microgram/ml) overnight abolished the effects of SRIF on Ca2+ currents, [Ca2+]i and insulin secretion implying a G-protein dependence in SRIF's actions. Thus, one mechanism by which SRIF decreases insulin secretion is by inhibiting Ca2+ influx through voltage-dependent Ca2+ channels, an action mediated through a pertussis toxin-sensitive G-protein.  相似文献   

16.
Short-term stimulation of beta-receptors is known to affect cardiac ion channels; however, the impact of longer-term stimulation on intrinsic channel function is poorly understood. To evaluate this, cultured guinea pig ventricular myocytes were exposed to isoproterenol (10 nM), vehicle, or isoproterenol plus propranolol (1 microM) for 48 h. Sustained exposure to isoproterenol decreased the density of the inward rectifier (I(K1)), slow delayed rectifier (I(Ks)), and L-type Ca2+ (I(Ca L)) currents, effects that were fully prevented by propranolol. Changes in K+ currents were prevented by the beta1-selective antagonist CGP-20712A, unaffected by the beta2-antagonist ICI-118,551, and mimicked by the membrane-permeable cAMP analog 8-bromo-cAMP. Isoproterenol did not alter the current-voltage relationship of the K+ currents but increased the density of T-type Ca2+ current (I(Ca T)) and thereby increased the proportion of the total Ca2+ current at more negative potentials. We conclude that sustained exposure to isoproterenol reduces I(K1), I(Ks), and I(Ca L) density and increases the density of I(Ca T). The direct ionic current remodeling effects of sustained beta-adrenoceptor stimulation resemble changes reported with heart failure and may be important in arrhythmogenic ionic remodeling.  相似文献   

17.
The possibility of interactions between calcium and cyclic AMP (cAMP) in the mechanism of stimulation of H+ transport by A23187 was studied in the isolated gastric mucosa of the toad Bufo marinus. A23187 stimulated H+ secretion and histamine release. The amount of histamine released by A23187 did not explain the degree of stimulation. Metiamide partially inhibited the response to A23187. Ca++ ionophore produced an overstimulation of secretion after H+ transport had been induced by supramaximal effective concentrations of histamine (10-4 M). In the presence of metiamide, IMX potentiated the response to A23187. Also, in the same condition (metiamide treated) the effects of db-cAMP and A23187 were additive. The results are consistent with an interaction between Ca++ and ionophore-released histamine at the oxyntic cell in the stimulation by A23187. The stimulatory response may be the result of a potentiation between calcium and cAMP at the intracellular level.  相似文献   

18.
Vesicular sarcolemmal preparations isolated from rat hearts were characterized by high total ATPase (4.32 +/- 0.57 mumol/min per mg), adenylate cyclase (121 +/- 11 pmol/min per mg) and creatine kinase (1.73 +/- 0.35 mumol/min per mg) activities as well as Na-Ca exchange specific to sodium. ATPase activity was inhibited with digitoxigenin by 50-70% and was not changed by ouabain, ionophore A23187 or oligomycin. Sarcolemmal vesicles bound [3H]digitoxigenin and [3H]ouabain in isotonic medium in the presence of Pi and Mg2+. The number of binding sites for hydrophobic digitoxigenin (N = 237 pmol/mg) was several-times higher than that for hydrophilic ouabain (N = 32.7 pmol/mg). These data show that sarcolemmal preparations were not significantly contaminated by mitochondria and sarcoplasmic reticulum and consisted mostly of inside-out vesicles. Incubation of these vesicles with 45Ca2+ (0.5-10 mM) led to penetration of the latter into the vesicles with the following binding characteristics: number of binding sites (N = 20.5 +/- 4.6 nmol/mg, Kd approximately equal to 2.0 mM). Ca2+ binding to the inner surface of vesicles was proved by the following facts: (1) Ca2+ ionophore A23187 increased slightly total intravesicular Ca2+ content but markedly accelerated Ca2+ efflux along its concentration gradient; (2) gramicidin and osmotic shock showed a similar accelerating effect. Ca2+ efflux from the vesicles along its concentration gradient ([Ca2+]i/[Ca2+]e = 2.0 mM/0.1 microM) was inhibited by Mn2+, Co2+, and verapamil when they acted inside the vesicles. The rate of Ca2+ efflux was hyperbolically dependent on intravesicular Ca2+ concentration (Km approximately equal to 2.9 mM). These data reveal that Ca2+ efflux from sarcolemmal vesicles is controlled by Ca2+ binding to the sarcolemmal membrane. Ca2+ efflux from the vesicles was stimulated 1.7--times after incubation of vesicles with 0.2 mM MgATP or MgADP and 15-times after treatment with 0.2 mM adenylyl beta, gamma-imidodiphosphate. Enhancement in the rate of Ca2+ efflux correlated with the increase in the intravesicular Ca2+ content. ATP-stimulated Ca2+ efflux was suppressed by verapamil and was nonmonotonically dependent upon the transmembrane potential created by the K+ concentration gradient in the presence of valinomycin, Ca2+ efflux being slower at extreme values of membrane potential (+/- 80 mV).  相似文献   

19.
The mitogenic action of the divalent ionophore A23187 was confirmed and shown to be very sensitive to changes in extracellular calcium ion concentration. At optimal calcium and ionophore concentrations, an increase in [3H]-thymidine incorporation was seen that was similar to that seen after phytohemagglutinin addition. A calcium-dependent stimulation of alpha-aminoisobutyric acid transport was also seen after A23187 addition. Studies with three inhibitors demonstrate a similarity between proliferation induced by phytohemagglutinin and by A23187. Isoproterenol (10(-4) M) and ouabain (10(-7) M) blocked the effects of phytohemagglutinin and A23187. A drug, D-600 that has been shown to block calcium channels in cardiac muscle, inhibited proliferation induced by either phytohemagglutinin or A23187. This concentration of D600 had no effect on either phytohemagglutinin- or A23187-induced 45Ca2+ uptake. Furthermore, the (+) and (-) isomers separated from racemic D600, which have been shown to block sodium and calcium channels respectively in smooth muscle, had equal potency in blocking lymphocyte proliferation.  相似文献   

20.
The chemoattractant cAMP elicits a transient efflux of K+ in cell suspensions of Dictyostelium discoideum. This cellular response displayed half-maximal activity at about 1 microM cAMP and saturated at 100 microM cAMP, cAMP-stimulated K+ efflux, measured with a K+-sensitive electrode, depended on the extracellular free Ca2+ concentration ([Ca2+]0) and was maximal in the presence of EGTA. Usually more than 90% of the K+ release could be inhibited by the addition of Ca2+. Half-maximal reduction occurred at about 2 microM [Ca2+]0. Inhibition was also observed in the presence of caffeine or A23187, drugs known to elevate the intracellular free Ca2+ concentration ([Ca2+]i). Under conditions where [Ca2+]0 was maintained at a low level, half-maximal inhibition was 1 mM for caffeine and 3 microM for A23187. These results indicate that Cai2+ is involved in the regulation of K+ efflux. Simultaneous measurements of Ca2+ uptake and K+ efflux induced by cAMP as well as free running oscillations of both ions revealed that initiation and termination of Ca2+ uptake slightly preceded those of K+ efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号