首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined changes in rat plantaris, diaphragm, and intercostal muscle metabolites following exercise of various intensities and durations, in normoxia and hypoxia (FIO2 = 0.12). Marked alveolar hyperventilation occurred during all exercise conditions, suggesting that respiratory muscle motor activity was high. [ATP] was maintained at rest levels in all muscles during all normoxic and hypoxic exercise bouts, but at the expense of creatine phosphate (CP) in plantaris muscle and diaphragm muscle following brief exercise at maximum O2 uptake (VO2max) in normoxia. In normoxic exercise plantaris [glycogen] fell as exercise exceeded 60% VO2max, and was reduced to less than 50% control during exhaustive endurance exercise (68% VO2max for 54 min and 84% for 38 min). Respiratory muscle [glycogen] was unchanged at VO2max as well as during either type of endurance exercise. Glucose 6-phosphate (G6P) rose consistently during heavy exercise in diaphragm but not in plantaris. With all types of exercise greater than 84% VO2max, lactate concentration ([LA]) in all three muscles rose to the same extent as arterial [LA], except at VO2max, where respiratory muscle [LA] rose to less than half that in arterial blood or plantaris. Exhaustive exercise in hypoxia caused marked hyperventilation and reduced arterial O2 content; glycogen fell in plantaris (20% of control) and in diaphragm (58%) and intercostals (44%). We conclude that respiratory muscle glycogen stores are spared during exhaustive exercise in the face of substantial glycogen utilization in plantaris, even under conditions of extreme hyperventilation and reduced O2 transport. This sparing effect is due primarily to G6P inhibition of glycogen phosphorylase in diaphragm muscle. The presence of elevated [LA] in the absence of glycogen utilization suggests that increased lactate uptake, rather than lactate production, occurred in the respiratory muscles during exhaustive exercise.  相似文献   

2.
Microgravity effects were studied on three muscles: gastrocnemius lateralis, plantaris and diaphragm, after the biocosmos 1514 and 1667 space flights. Results showed a decrease of maximal mechanical activity on both gastrocnemius and plantaris while no modification was observed on diaphragm. Cross-bridge cycling speed was reduced on both gastrocnemius and plantaris. Moreover, a reduced calcium binding affinity appeared in gastrocnemius.  相似文献   

3.
Myosin heavy chain (MHC) isoform composition and Ca2+ Mg2+ dependent ATPase activity were determined in myofibrils prepared from skeletal muscles (diaphragm, soleus, plantaris and tibialis anterior) of euthyroid (C), hypothyroid (Tx) and hyperthyroid (T3) rats. Direct comparison between T3 and Tx gave an indication of the maximal effect of thyroid hormones. Significant differences in MHC-1 and MHC-2B proportions and in ATPase activity were found in all muscles. The difference in MHC-2A/X proportion was significant only in soleus, diaphragm and plantaris. When T3 and C were compared, significant variations in MHC isoform composition were found only in plantaris and diaphragm. The comparison between Tx and C showed significant differences in MHC isoform distribution and in ATPase activity in most muscles. The differences in ATPase activity among muscles and among thyroid states were consistent with those in MHC isoform distribution. From the correlations between ATPase activity and MHC isoform distribution the enzymatic activities of individual MHC isoforms were calculated. The results indicate that MHC isoform distribution is controlled by thyroid state in all skeletal muscles and that changes in MHC isoforms distribution are accompanied by proportional changes in ATPase activity.  相似文献   

4.
Some controversy exists in the literature as to whether or not diaphragmatic glycogen is utilized during exercise. In this study male Sprague-Dawley rats were used to determine whether prolonged treadmill exercise would result in a significant reduction of glycogen concentration in the respiratory muscles. Untrained rats were run to exhaustion at a speed of 24 m/min, up a 10% grade. Run time averaged 48:30 min. After exercise a significant reduction in glycogen was observed in the diaphragm (43% of control), intercostals (43%), heart (39%), and plantaris (76%). In the diaphragm a significant reduction was shown in both types I and II fibers using the periodic acid-Schiff (PAS) stain for glycogen. These findings show that muscles with vastly different aerobic capacities utilize endogenous glycogen during moderately intense submaximal endurance exercise and that the costal diaphragm muscle is not an exception as has recently been suggested.  相似文献   

5.
We investigated age-related changes in antioxidant, glycolytic, beta-oxidation, and tricarboxylic acid cycle enzyme activity in the diaphragm and plantaris muscle of female Fischer 344 rats. Tissue samples from the costal and crural diaphragm and plantaris muscle were obtained from 30 animals in the following age groups: 1) 6 mo old (n = 10), 2) 26 mo old (n = 10), and 3) 30 mo old (n = 10). Aging had no effect (P greater than 0.05) on the activities of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HADH) in the costal or crural diaphragm. Similarly, no age-related differences existed (P greater than 0.05) in the crural diaphragm in lactate dehydrogenase (LDH) or glutathione peroxidase (GPX) activity. In contrast, the activities of LDH and GPX were significantly (P less than 0.05) higher in the costal diaphragm in the 30- than in the 6-mo old animals. In addition, the ratio of LDH to CS activity increased (P less than 0.05) as a function of age in the costal diaphragm. Conversely, the ratio of CS to GPX activity in the costal diaphragm was lower (P less than 0.05) in the 30- than in the 6-mo old animals. No significant (P greater than 0.05) age-related differences existed in LDH-to-CS or CS-to-GPX activity ratios in the crural diaphragm. Finally, aging resulted in a significant decrease (P less than 0.05) in the activities of LDH, CS, and HADH in the plantaris muscle. These data demonstrate that, unlike many hindlimb locomotor muscles, the oxidative capacity of the Fischer 344 rat diaphragm does not decrease in old age.  相似文献   

6.
The ultrastructural changes found in the endomysium of rats after denervation of the diaphragm and m. plantaris were studied. Within the first week after crossing the peripheral nerve in the nedomysium there appeared an increased amount of neutrophils and monocytes as well as phagocytic material in the cytoplasm of histocytes. Activization of the cytoplasm of fibroblasts which manifested itself in the appearance of numerous vesicles and multiple free and bound ribosomes was detected by the end of the second and the beginning of the third weeks after denervation. At the same period eosinophils invaded the endomysium and became closely surrounded by numerous collagenic fibres. After reparation of neuromuscular synapses these changes disappeared. On the basis of these results and others founded in previous studies of denervated and reinnervated skeletal muscles the authors consider these changes in the endomysium appearing under the above experimental conditions to be manifestations of metabolic interrelations between the endomysium connective tissue and muscle fibres.  相似文献   

7.
We examined the oxidative and antioxidant enzyme activities in respiratory and locomotor muscles in response to endurance training in young and aging rats. Young adult (4-mo-old) and old (24-mo-old) female Fischer 344 rats were divided into four groups: 1) young trained (n = 12), 2) young untrained (n = 12), 3) old trained (n = 10), and 4) old untrained (n = 6). Both young and old endurance-trained animals performed the same training protocol during 10 wk of continuous treadmill exercise (60 min/day, 5 days/wk). Compared with young untrained animals, the young trained group had significantly elevated (P less than 0.05) activities of 3-hydroxyacyl-CoA dehydrogenase (HADH), glutathione peroxidase (GPX), and citrate synthase (CS) in both the costal diaphragm and the plantaris muscle. In contrast, training had no influence (P greater than 0.05) on the activity of lactate dehydrogenase within the costal diaphragm in young animals. In the aging animals, training did not alter (P greater than 0.05) activities of CS, HADH, GPX, or lactate dehydrogenase in the costal diaphragm but significantly (P less than 0.05) increased CS, HADH, and GPX activities in the plantaris muscle. Furthermore, training resulted in higher activities of CS and HADH in the intercostal muscles in the old trained than in the old untrained animals. Finally, activities of CS, HADH, and GPX were significantly (P less than 0.05) lower in the plantaris in the old untrained than in the young untrained animals; however, CS, HADH, and GPX activities were greater (P less than 0.05) in the costal diaphragm in the old sedentary than in the young untrained animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.  相似文献   

9.
10.
An original method to induce heat stress was used to clarify the time course of changes in heat shock proteins (HSPs) in rat skeletal muscles during recovery after a single bout of heat stress. One hindlimb was inserted into a stainless steel can and directly heated by raising the air temperature inside the can via a flexible heater twisted around the steel can. Muscle temperature was increased gradually and maintained at 42 degrees C for 60 min. Core rectal and contralateral muscle temperatures were increased <1.5 degrees C during the heat stress. HSP60, HSP72, and heat shock cognate (HSC) 73 content in the slow soleus and fast plantaris in both limbs were determined immediately (0 h) and 2, 4, 8, 12, 24, 36, 48, or 60 h after heat stress. Within 0-4 h, all HSPs were approximately 1.5- to 2.2-fold higher in heat-stressed than contralateral soleus. Compared with the contralateral plantaris, the heat-stressed plantaris had a higher (1.5-fold) HSP60 content immediately and 2 h after heat stress and a higher (2.5- to 6.8-fold) HSP72 content between 24 and 48 h after heat stress. Plantaris HSC73 content was not affected by heat stress. This unique heat-stress method provides advantages over existing systems; muscle temperature can be controlled precisely during heating and the HSP response can be compared between muscles in heat-stressed and contralateral limbs of individual rats. Results show a differential response of HSPs in the soleus and plantaris during recovery after heat stress; soleus demonstrated a more rapid and broader HSP response to heat stress than plantaris.  相似文献   

11.
Hibernating mammals present many unexplored opportunities for the study of muscle biology. The hindlimb muscles of a small rodent hibernator (Spermophilus lateralis) atrophy slightly during months of torpor, representing a reduction in the disuse atrophy commonly seen in other mammalian models. How torpor affects contractile protein expression is unclear; therefore, we examined the myosin heavy-chain (MHC) isoform profile of ground squirrel skeletal muscle before and after hibernation. Immunoblotting was performed first to identify the MHC isoforms expressed in this species. Relative percentages of MHC isoforms in individual muscles were then measured using SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The soleus and diaphragm did not display differences in isoforms following hibernation, but we found minor fast-to-slow isoform shifts in MHC protein in the gastrocnemius and plantaris. These subtle changes are contrary to those predicted by other models of inactivity but may reflect the requirement for shivering thermogenesis during arousals from torpor. We also measured mRNA expression of the Muscle Atrophy F-box (MAFbx), a ubiquitin ligase important in proteasome-mediated proteolysis. Expression was elevated in the hibernating gastrocnemius and the plantaris but was not associated with atrophy. Skeletal muscle from hibernators displays unusual plasticity, which may be a combined result of the intense activity during arousals and the reduction of metabolism during torpor.  相似文献   

12.
Differential costal and crural diaphragm compensation for posture changes   总被引:2,自引:0,他引:2  
The electromyographic (EMG) activities of the costal and crural diaphragm were recorded from bipolar fine-wire electrodes placed in the costal fibers adjacent to the central tendon and in the anterior portions of the crural fibers in 12 anesthetized cats. The EMG activities of costal and crural recordings were compared during posture changes from supine to head up and during progressive hyperoxic hypercapnia in both positions. The activity of both portions of the diaphragm was greater in the head up compared with supine posture at all levels of CO2; and increases in crural activity were greater than those in costal activity both as a result of changes in posture and with increasing CO2 stimuli. These results are consistent with the concept that diaphragm activation is modulated in response to changes in resting muscle length, and further, that neural control mechanisms allow separate regulation of costal and crural diaphragm activation.  相似文献   

13.

Background

Mechanical ventilation (MV) induces diaphragmatic muscle fiber atrophy and contractile dysfunction (ventilator induced diaphragmatic dysfunction, VIDD). It is unknown how rapidly diaphragm muscle recovers from VIDD once spontaneous breathing is restored. We hypothesized that following extubation, the return to voluntary breathing would restore diaphragm muscle fiber size and contractile function using an established rodent model.

Methods

Following 12 hours of MV, animals were either euthanized or, after full wake up, extubated and returned to voluntary breathing for 12 hours or 24 hours. Acutely euthanized animals served as controls (each n = 8/group). Diaphragmatic contractility, fiber size, protease activation, and biomarkers of oxidative damage in the diaphragm were assessed.

Results

12 hours of MV induced VIDD. Compared to controls diaphragm contractility remained significantly depressed at 12 h after extubation but rebounded at 24 h to near control levels. Diaphragmatic levels of oxidized proteins were significantly elevated after MV (p = 0.002) and normalized at 24 hours after extubation.

Conclusions

These findings indicate that diaphragm recovery from VIDD, as indexed by fiber size and contractile properties, returns to near control levels within 24 hours after returning to spontaneous breathing. Besides the down-regulation of proteolytic pathways and oxidative stress at 24 hours after extubation further repairing mechanisms have to be determined.  相似文献   

14.
Muscle fibre composition was compared among the proximal (25%), middle (50%) and distal (75%) regions of the muscle length to investigate whether compensatory overload by removal of synergists induces region-specific changes of fibre types in rat soleus and plantaris muscles. In addition, we evaluated fibre cross-sectional area in each region to examine whether fibre recruitment pattern against functional overload is nonuniform in different regions. Increases in muscle mass and fibre area confirmed a significant hypertrophic response in the overloaded soleus and plantaris muscles. Overloading increased the percentage of type I fibres in both muscles and that of type IIA fibres in the plantaris muscle, with the greater changes being found in the middle and distal regions. The percentage of type I fibres in the proximal region was higher than that of the other regions in the control soleus muscle. In the control plantaris muscle, the percentage of type I and IIA fibres in the middle region were higher than that of the proximal and distal regions. With regard to fibre size, type IIB fibre area of the middle and distal regions in the plantaris increased by 51% and 57%, respectively, with the greater changes than that of the proximal region (37%) after overloading. These findings suggest that compensatory overload promoted transformation of type II fibres into type I fibres in rat soleus and plantaris muscles, with the greater changes being found in the middle and distal regions of the plantaris muscle.  相似文献   

15.
Functional overload (FO) is a powerful inducer of muscle hypertrophy and both oxidative and mechanical stress in muscle fibers. Heat shock protein 25 (HSP25) may protect against both of these stressors, and its expression can be regulated by changes in muscle loading and activation. The primary purpose of the present study was to test the hypothesis that chronic FO increases HSP25 expression and phosphorylation (pHSP25) in hypertrophying rat hindlimb muscle. HSP25 and pHSP25 levels were quantified in soluble and insoluble fractions of the soleus and plantaris to determine whether 3 or 7 days of FO increase translocation of HSP25 and/or pHSP25 to the insoluble fraction. p38 protein and phosphorylation (p-p38) was measured to determine its association with changes in pHSP25. HSP25 mRNA showed time-dependent increases in both the soleus and plantaris with FO. Three or seven days of FO increased HSP25 and pHSP25 in the soluble fraction in both muscles, with a greater response in the plantaris. In the insoluble fraction, HSP25 was increased after 3 or 7 days in both muscles, whereas pHSP25 was only increased in the 7-day plantaris. p38 and p-p38 increased in the plantaris at both time points. In the soleus, p-p38 only increased after 7 days. These results show that FO is associated with changes in HSP25 expression and phosphorylation and suggest its role in the remodeling that occurs during muscle hypertrophy. Increases in HSP25 in the insoluble fraction suggest that it may help to stabilize actin and/or other cytoskeletal proteins during the stress of muscle remodeling.  相似文献   

16.
The ultrastructure of neuro-muscular junctions in diaphragm muscle underwent certain changes in the course of experimental hypothyrosis (thermal destruction of a part of parathyroid gland). The most pronounced structural changes were observed in maximum hypocalcemia (7 days after the operation). There was a correlation between the pattern of a transmitter release and some parameters of vesicular apparatus (the number and volume distribution of synaptic vesicles). These effects suggest that hypoparathyroidism causes an increase in calcium content in axon terminals.  相似文献   

17.
To determine the level of coordination in succinate dehydrogenase (SDH) activity between plantaris motoneurons and muscle fibers, the soleus and gastrocnemius muscles were bilaterally excised in four cats to subject the plantaris to functional overload (FO). Five normal cats served as controls. Twelve weeks after surgery the right plantaris in each cat was injected with horseradish peroxidase to identify plantaris motoneurons. SDH activity then was measured in a population of plantaris motoneurons and muscle fibers in each cat. Control motoneurons and muscle fibers had similar mean SDH activities and a similar relationship between cell size and SDH activity. After FO, muscle fiber size doubled and mean muscle fiber SDH activity halved. Motoneuron mean SDH activity and size were unaffected by FO. Total SDH activity was unchanged in both the motoneurons and muscle fibers after FO. These changes suggest a selective increase in contractile proteins with little or no modulation of mitochondrial proteins in the muscle fibers, because total SDH activity was unchanged in muscle fibers after FO. These data demonstrate that although mean SDH activities were similar in control motoneurons and muscle fibers, mean SDH activities in these two cell types can change independently.  相似文献   

18.
1. We measured fractional rates of protein synthesis, capacities for protein synthesis (i.e. RNA/protein ratio) and efficiencies of protein synthesis (i.e. protein-synthesis rate relative to RNA content) in fasted (24 or 48 h) or fasted/surgically stressed female adult rats. 2. Of the 15 tissues studied, fasting caused decreases in protein content in the liver, gastrointestinal tract, heart, spleen and tibia. There was no detectable decrease in the protein content of the skeletal muscles studied. 3. Fractional rates of synthesis were not uniformly decreased by fasting. Rates in striated muscles, uterus, liver, spleen and tibia were consistently decreased, but decreases in other tissues (lung, gastrointestinal tract, kidney or brain) were inconsistent or not detectable, suggesting that, in many tissues in the mature rat, protein synthesis was not especially sensitive to fasting. 4. In fasting, the decreases in fractional synthesis rate resulted from changes in efficiency (liver and tibia) or from changes in efficiency and capacity (heart, diaphragm, plantaris and gastrocnemius). In the soleus, the main change was a decrease in capacity. 5. Surgical stress increased fractional rates of protein synthesis in diaphragm (where there were increases in both efficiency and capacity) by about 50%, in liver by about 20%, in spleen by about 40%, and possibly also in the heart. In liver and spleen, capacities were increased. In other tissues (including the skeletal muscles), the fractional rates of protein synthesis were unaffected by surgical stress.  相似文献   

19.
Ultrastructural changes of rat diaphragm muscle fibers were studied after administration of chlorophos, i. e. organophosphorus inhibitor. Observations were made 10-180 seconds after treatment (concentrations--18 and 24 mM). The swelling of mitochondria and the increase in the length of sarcomeres were observed simultaneously. These changes were phasic. The swelling of mitochondria is probably due to the increase in energetical activity of muscle fibres.  相似文献   

20.
Increases in aerobic capacity in both young and senescent rats consequent to endurance exercise training are now known to occur not only in locomotor skeletal muscle but also in diaphragm. In the current study the effects of aging and exercise training on the myosin heavy chain (MHC) composition were determined in both the costal and crural diaphragm regions of female Fischer 344 rats. Exercise training [treadmill running at 75% maximal oxygen consumption (1 h/day, 5 day/wk, x 10 wk)] resulted in similar increases in plantaris muscle citrate synthase activity in both young (5 mo) and old (23 mo) trained animals (P < 0.05). Computerized densitometric image analysis of fast and slow MHC bands revealed the ratio of fast to slow MHC to be significantly higher (P < 0.005) in the crural compared with costal diaphragm region in both age groups. In addition, a significant age-related increase (P < 0.05) in percentage of slow MHC was observed in both diaphragm regions. However, exercise training failed to change the relative proportion of slow MHC in either the costal or crural region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号