首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reproducible method for studying three-dimensional knee kinematics   总被引:1,自引:0,他引:1  
The methods used in movement analysis often rely on the definition of joint coordinate systems permitting three-dimensional (3D) kinematics. The first aim of this research project was to present a functional and postural method (FP method) to define a bone-embedded anatomical frame (BAF) on the femur and tibia, and, subsequently, a knee joint coordinate system. The repeatability of the proposed method was also assessed. Using FP method to define the BAFs, 4 kinematic parameters (flexion/extension, abduction/adduction, tibial internal/external rotation, and antero-posterior translation) were computed for 15 subjects walking on a treadmill. The repeatability for all four kinematic parameters was then assessed, using intra- and inter-observer settings. After pooling the results for all observers, the mean repeatability value ranged between 0.4 degrees and 0.8 degrees for rotation angles and between 0.8 and 2.2 mm for translation.  相似文献   

2.
Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish ‘real’ changes in gait performance over time.  相似文献   

3.
Human joint torques during gait are usually computed using inverse dynamics. This method requires a skeletal model, kinematics and measured ground reaction forces and moments (GRFM). Measuring GRFM is however only possible in a controlled environment. This paper introduces a probabilistic method based on probabilistic principal component analysis to estimate the joint torques for healthy gait without measured GRFM. A gait dataset of 23 subjects was obtained containing kinematics, measured GRFM and joint torques from inverse dynamics in order to obtain a probabilistic model. This model was then used to estimate the joint torques of other subjects without measured GRFM. Only kinematics, a skeletal model and timing of gait events are needed. Estimation only takes 0.28 ms per time instant. Using cross-validation, the resulting root mean square estimation errors for the lower-limb joint torques are found to be approximately 0.1 Nm/kg, which is 6–18% of the range of the ground truth joint torques. Estimated joint torque and GRFM errors are up to two times smaller than model-based state-of-the-art methods. Model-free artificial neural networks can achieve lower errors than our method, but are less repeatable, do not contain uncertainty information on the estimates and are difficult to use in situations which are not in the learning set. In contrast, our method performs well in a new situation where the walking speed is higher than in the learning dataset. The method can for example be used to estimate the kinetics during overground walking without force plates, during treadmill walking without (separate) force plates and during ambulatory measurements.  相似文献   

4.
Biomechanics of overground vs. treadmill walking in healthy individuals.   总被引:1,自引:0,他引:1  
The goal of this study was to compare treadmill walking with overground walking in healthy subjects with no known gait disorders. Nineteen subjects were tested, where each subject walked on a split-belt instrumented treadmill as well as over a smooth, flat surface. Comparisons between walking conditions were made for temporal gait parameters such as step length and cadence, leg kinematics, joint moments and powers, and muscle activity. Overall, very few differences were found in temporal gait parameters or leg kinematics between treadmill and overground walking. Conversely, sagittal plane joint moments were found to be quite different, where during treadmill walking trials, subjects demonstrated less dorsiflexor moments, less knee extensor moments, and greater hip extensor moments. Joint powers in the sagittal plane were found to be similar at the ankle but quite different at the knee and hip joints. Differences in muscle activity were observed between the two walking modalities, particularly in the tibialis anterior throughout stance, and in the hamstrings, vastus medialis and adductor longus during swing. While differences were observed in muscle activation patterns, joint moments and joint powers between the two walking modalities, the overall patterns in these behaviors were quite similar. From a therapeutic perspective, this suggests that training individuals with neurological injuries on a treadmill appears to be justified.  相似文献   

5.
An unbiased understanding of foot kinematics has been difficult to achieve due to the complexity of foot structure and motion. We have developed a protocol for evaluation of foot kinematics during barefoot walking based on a multi-segment foot model. Stereophotogrammetry was used to measure retroreflective markers on three segments of the foot plus the tibia. Repeatability was evaluated between-trial, between-day and between-tester using two subjects and two testers. Subtle patterns and ranges of motion between segments of the foot were consistently detected. We found that repeatability between different days or different testers is primarily subject to variability of marker placement more than inter-tester variability or skin movement. Differences between inter-segment angle curves primarily represent a shift in the absolute value of joint angles from one set of trials to another. In the hallux, variability was greater than desired due to vibration of the marker array used. The method permits objective foot measurement in gait analysis using skin-mounted markers. Quantitative and objective characterisation of the kinematics of the foot during activity is an important area of clinical and research evaluation. With this work we hope to have provided a firm basis for a common protocol for in vivo foot study.  相似文献   

6.
BackgroundVariability in joint kinematics is necessary for adaptability and response to everyday perturbations; however, intrinsic neuromotor changes secondary to stroke often cause abnormal movement patterns. How these abnormal movement patterns relate to joint kinematic variability and its influence on post-stroke walking impairments is not well understood.ObjectiveThe purpose of this study was to evaluate the movement variability at the individual joint level in the paretic and non-paretic limbs of individuals post-stroke.MethodsSeven individuals with hemiparesis post-stroke walked on a treadmill for two minutes at their self-selected speed and the average speed of the six-minute walk test while kinematics were recorded using motion-capture. Variability in hip, knee, and ankle flexion/extension angles during walking were quantified with the Lyapunov exponent (LyE). Interlimb differences were evaluated.ResultsThe paretic side LyE was higher than the non-paretic side at both self-selected speed (Hip: 50%; Knee: 74%), and the average speed of the 6-min walk test (Hip: 15%; Knee: 93%).ConclusionDifferences in joint kinematic variability between limbs of persons post-stroke supports further study of the source of non-paretic limb deviations as well as the clinical implications of joint kinematic variability in persons post-stroke. The development of bilaterally-targeted post-stroke gait interventions to address variability in both limbs may promote improved outcomes.  相似文献   

7.
There are minimal data describing the between-day repeatability of EMG measurements during running. Furthermore, there are no data characterising the repeatability of surface EMG measurement from the adductor muscles, during running or walking. The purpose of this study was to report on the consistency of EMG measurement for both running and walking across a comprehensive set of lower limb muscles, including adductor magnus, longus and gracilis. Data were collected from 12 lower limb muscles during overground running and walking on two separate days. The coefficient of multiple correlation (CMC) was used to quantify waveform similarity across the two sessions for signals normalised to either maximal voluntary isometric contraction (MVIC) or mean/peak signal magnitude. For running, the data showed good or excellent repeatability (CMC = 0.87–0.96) for all muscles apart from gracilis and biceps femoris using the MVIC method. Similar levels of repeatability were observed for walking. Importantly, using the peak/mean method as an alternative to the MVIC method, resulted in only marginal improvements in repeatability. The proposed protocol facilitated the collection of repeatable EMG data during running and walking and therefore could be used in future studies investigating muscle patterns during gait.  相似文献   

8.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

9.
Knee instability is a major problem in patients with anterior cruciate ligament injury or knee osteoarthritis. A valid and clinically meaningful measure for functional knee instability is lacking. The concept of the gait sensitivity norm, the normalized perturbation response of a walking system to external perturbations, could be a sensible way to quantify knee instability. The aim of this study is to explore the feasibility of this concept for measurement of knee responses, using controlled external perturbations during walking in healthy subjects.Nine young healthy participants walked on a treadmill, while three dimensional kinematics were measured. Sudden lateral translations of the treadmill were applied at five different intensities during stance. Right knee kinematic responses and spatio-temporal parameters were tracked for the perturbed stride and following four cycles, to calculate perturbation response and gait sensitivity norm values (i.e. response/perturbation) in various ways.The perturbation response values in terms of knee flexion and abduction increased with perturbation intensity and decreased with an increased number of steps after perturbation. For flexion and ab/adduction during midswing, the gait sensitivity norm values were shown to be constant over perturbation intensities, demonstrating the potential of the gait sensitivity norm as a robust measure of knee responses to perturbations.These results show the feasibility of using the gait sensitivity norm concept for certain gait indicators based on kinematics of the knee, as a measure of responses during perturbed gait. The current findings in healthy subjects could serve as reference-data to quantify pathological knee instability.  相似文献   

10.
The kinematics of the pelvis and thorax are important in gait studies since their movement patterns are closely related to gait efficiency and 'smoothness' of locomotion. The purpose of this study was to identify features of normal gait patterns for later comparisons with pathological and developmental gait patterns. A two camera SELSPOT system interfaced with an HP1000 minicomputer was used to obtain three-dimensional kinematic/temporal data for the pelvis and thorax. Data from treadmill walking of eight adults were used for within subject (at different speeds) analyses. The analyses revealed a very complex pattern with a set of breakpoints which was consistent over all subjects. Some features were invariant over a range of walking speeds although the total range of motion changed considerably.  相似文献   

11.
To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration – MRPC – and once with the same model prepared without prescribed co-ordinates – MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MRPC: SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MRPC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim.  相似文献   

12.
Recent studies support the involvement of supraspinal networks in control of bipedal human walking. Part of this evidence encompasses studies, including our previous work, demonstrating that gait kinematics and limb coordination during treadmill walking can be inferred from the scalp electroencephalogram (EEG) with reasonably high decoding accuracies. These results provide impetus for development of non-invasive brain-machine-interface (BMI) systems for use in restoration and/or augmentation of gait- a primary goal of rehabilitation research. To date, studies examining EEG decoding of activity during gait have been limited to treadmill walking in a controlled environment. However, to be practically viable a BMI system must be applicable for use in everyday locomotor tasks such as over ground walking and turning. Here, we present a novel protocol for non-invasive collection of brain activity (EEG), muscle activity (electromyography (EMG)), and whole-body kinematic data (head, torso, and limb trajectories) during both treadmill and over ground walking tasks. By collecting these data in the uncontrolled environment insight can be gained regarding the feasibility of decoding unconstrained gait and surface EMG from scalp EEG.  相似文献   

13.
Mechanical tuning of an ankle-foot orthosis (AFO) is important in improving gait in individuals post-stroke. Alignment and resistance are two factors that are tunable in articulated AFOs. The aim of this study was to investigate the effects of changing AFO ankle alignment on lower limb joint kinematics and kinetics with constant dorsiflexion and plantarflexion resistance in individuals post-stroke. Gait analysis was performed on 10 individuals post-stroke under four distinct alignment conditions using an articulated AFO with an ankle joint whose alignment is adjustable in the sagittal plane. Kinematic and kinetic data of lower limb joints were recorded using a Vicon 3-dimensional motion capture system and Bertec split-belt instrumented treadmill. The incremental changes in the alignment of the articulated AFO toward dorsiflexion angles significantly affected ankle and knee joint angles and knee joint moments while walking in individuals post-stroke. No significant differences were found in the hip joint parameters. The alignment of the articulated AFO was suggested to play an important role in improving knee joint kinematics and kinetics in stance through improvement of ankle joint kinematics while walking in individuals post-stroke. Future studies should investigate long-term effects of AFO alignment on gait in the community in individuals post-stroke.  相似文献   

14.
Repeatability of traditional kinematic and kinetic models is affected by the ability to accurately locate anatomical landmarks (ALs) to define joint centres and anatomical coordinate systems. Numerical methods that define joint centres and axes of rotation independent of ALs may also improve the repeatability of kinematic and kinetic data. The purpose of this paper was to compare the repeatability of gait data obtained from two models, one based on ALs (AL model), and the other incorporating a functional method to define hip joint centres and a mean helical axis to define knee joint flexion/extension axes (FUN model). A foot calibration rig was also developed to define the foot segment independent of ALs. The FUN model produced slightly more repeatable hip and knee joint kinematic and kinetic data than the AL model, with the advantage of not having to accurately locate ALs. Repeatability of the models was similar comparing within-tester sessions to between-tester sessions. The FUN model may also produce more repeatable data than the AL model in subject populations where location of ALs is difficult. The foot calibration rig employed in both the AL and FUN model provided an easy alternative to define the foot segment and obtain repeatable data, without accurately locating ALs on the foot.  相似文献   

15.
Researchers conduct gait analyses utilizing both overground and treadmill modes of running. Previous studies comparing these modes analyzed discrete variables. Recently, techniques involving quantitative pattern analysis have assessed kinematic curve similarity in gait. Therefore, the purpose of this study was to compare hip, knee and rearfoot 3-D kinematics between overground and treadmill running using quantitative kinematic curve analysis. Twenty runners ran at 3.35 m/s ± 5% during treadmill and overground conditions while right lower extremity kinematics were recorded. Kinematics of the hip, knee and rearfoot at footstrike and peak were compared using intraclass correlation coefficients. Kinematic curves during stance phase were compared using the trend symmetry method within each subject. The overall average trend symmetry was high, 0.94 (1.0 is perfect symmetry) between running modes. The transverse plane and knee frontal plane exhibited lower similarity (0.86-0.90). Other than a 4.5 degree reduction in rearfoot dorsiflexion at footstrike during treadmill running, all differences were ≤1.5 degrees. 17/18 discrete variables exhibited modest correlations (>0.6) and 8/18 exhibited strong correlations (>0.8). In conclusion, overground and treadmill running kinematic curves were generally similar when averaged across subjects. Although some subjects exhibited differences in transverse plane curves, overall, treadmill running was representative of overground running for most subjects.  相似文献   

16.
This study quantified the relationships between local dynamic stabiliht and variabilitr during continuous overground and treadmill walking. Stride-to-stride standard deviations were computed from temporal and kinematic data. Marimum finite-time Lyapunov exponents were estimated to quantify local dynamic stability. Local stability of gait kinematics was shown to be achieved over multiple consecutive strides. Traditional measures of variability poorly predicted local stability. Treadmill walking was associated with significant changes in both variability and local stability. Thus, motorized treadmills may produce misleading or erroneous results in situations where changes in neuromuscular control are likely to affect the variability and/or stability of locomotion.  相似文献   

17.
Reduced daily stepping in stroke survivors may contribute to decreased functional capacity and increased mortality. We investigated the relationships between clinical and biomechanical walking measures that may contribute to changes in daily stepping activity following physical interventions provided to participants with subacute stroke. Following ≤40 rehabilitation sessions, 39 participants were categorized into three groups: responders/retainers increased daily stepping >500 steps/day post-training (POST) without decreases in stepping at 2–6 month follow-up (F/U); responders/non-retainers increased stepping at POST but declined >500 steps/day at F/U; and, non-responders did not change daily stepping from baseline testing (BSL). Gait kinematics and kinetics were evaluated during graded treadmill assessments at BSL and POST. Clinical measures of gait speed, timed walking distance, balance and balance confidence were measured at BSL, POST and F/U. Between-group comparisons and regression analyses were conducted to predict stepping activity from BSL and POST measurements. Baseline and changes in clinical measures of walking demonstrated selective associations with stepping, although kinematic measures appeared to better discriminate responders. Specific measures suggest greater paretic vs non-paretic kinematic changes in responders with training, although greater non-paretic changes predicted greater gains (i.e., smaller declines) in stepping in retainers at F/U. No kinetic variables were primary predictors of changes in stepping activity at POST or F/U. The combined findings indicate specific biomechanical assessments may help differentiate changes in daily stepping activity post-stroke.  相似文献   

18.
The goal of this study was to determine the repeatability of gait parameters measured by a force plate gait analysis system (Leonardo Mechanograph® GW) in healthy children. Nineteen healthy children and adolescents (age range: 7–17 years) walked at a self-selected speed on an 11-m-long walkway. Vertical ground reaction forces were measured in the central 6 m of the walkway. Each participant performed three blocks of three trials while walking barefoot and three blocks of three trials while wearing shoes. There were no differences between trials within each condition. All force and spatiotemporal parameters had intraclass correlation coefficients above 0.87 and coefficients of variation in the order of 1–6%. In this group of healthy children and adolescents, gait analysis with a force plate system produced repeatable intra-day results.  相似文献   

19.
Although three-dimensional (3D) asymmetry has been reported in unilateral THA patients during gait, it is not well understood whether asymmetric hip kinematics during gait persist in bilaterally operated THA patients. The purpose of this study was to compare the in vivo 3D kinematics and component placement between bilateral and unilateral THA patients during gait. Eight bilateral and thirty-three unilateral THA patients were evaluated for both hips during treadmill gait using a validated combination of 3D computer tomography-based modeling and dual fluoroscopic imaging system (DFIS). The in vivo 3D kinematics of the unilateral THA group was first assessed. The magnitudes of kinematics and component placement difference between implanted hips in the bilateral THA group and between the implanted and non-implanted hips in the unilateral THA group were compared. The study results showed asymmetric gait kinematics in the unilateral THA group. Although the magnitude of kinematics differences between sides for both the bilateral and unilateral THA groups did not change significantly for hip rotations (p > 0.05), the bilaterally operated THA group has significantly lower magnitude of hip gait translation difference. Significant reduction in the magnitude of the acetabular cup adduction, stem adduction, and combine hip anteversion and adduction difference was observed in the bilateral THA group (p < 0.05). Our findings demonstrated that despite significant improvements of component placement and reduced magnitude of hip gait translation difference between implanted hips in the bilateral THA group, asymmetric hip kinematic rotations persisted in patients with bilateral THA during gait.  相似文献   

20.
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号