首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.  相似文献   

2.
Summary Fluorescence markers were studied in 40 patients with Down's syndrome and their parents. In 11 cases maternal and in 5 cases paternal non-disjunction could be shown. The disjunctional event occurred in the first meiotic division in 5 maternal and in 2 paternal cases. A second division failure was found in 4 maternal and 2 paternal cases. In 3 cases the failure could either be of first or second meiotic division origin.  相似文献   

3.
R. C. Brown  B. E. Lemmon 《Protoplasma》1991,161(2-3):168-180
Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.Abbreviations AMS axial microtubule system - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PCP procytokinetic plate - QMS quadripolar microtubule system - TEM transmission electron microscope (microscopy)  相似文献   

4.
Shamina NV  Shatskaia OA 《Genetika》2011,47(4):499-507
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.  相似文献   

5.
Ripe Xenopus oocytes in first meiotic prophase when incubated with progesterone in vitro progress synchronously in 3 to 5 h without interphase to second meiotic metaphase where they remain until fertilization or activation. Using highly purified preparations of regulatory and catalytic subunits of adenosine 3':5'-monophosphate-dependent protein kinase from muscle, this progesterone-stimulated cell division sequence was found to be inhibited by microinjection of the catalytic subunit and induced directly in the absence of progesterone after microinjection of regulatory subunit. Dose-response curves revealed that half-maximal effects of regulatory and catalytic subunits occurred at an internal concentration of approximately 0.1 muM. These results indicate that the catalytic subunit is necessary and sufficient to block progesterone-stimulated meiotic cell division. Other experiments revealed that the catalytic subunit was inhibitory only during the first hour after progesterone exposure, suggesting that initial steps in meiotic cell division are affected. Control experiments demonstrate that the muscle cAMP-dependent protein kinase subunits may interact with the endogenous oocyte protein kinase. The results support a model in which meiotic cell division is regulated by a phosphoprotein subject to control by cAMP-dependent protein kinase.  相似文献   

6.
Sixteen triploid and one tetraploid human abortuses were studied for the origin of polyploidy using a sequential Q- and R-banding technique. Ten triploid abortuses provided informative data: one originated in the maternal first meiotic division; five apparently resulted from dispermy; two derived from an error during either the paternal second meiotic division or the first mitotic division; and the last two were of paternal origin. The results indicate that paternal factors, especially dispermy, are the predominant sources of triploidy in man. The tetraploid abortus showed duplication of both the maternal and paternal haploid sets, suggesting normal division of chromosomes and suppression of cytoplasmic cleavage at the first mitotic division. No correlation was found between the origin of polyploidy and the phenotype of the triploid abortuses, nor between the origin of polyploidy and the maternal use of oral contraceptives.  相似文献   

7.
The mouse egg is ovulated with its nucleus arrested at the metaphase-II stage of meiosis. Sperm entry triggers the completion of the second meiotic division. It has been speculated that damage to the meiotic spindle of normally ovulated eggs at around the time of sperm entry could result in chromosome malsegregation and the death of conceptuses with numerical chromosome anomalies. This hypothesis was tested using nocodazole, a microtubule inhibitor. Nocodazole was administered either to maturing preovulatory oocytes or to normally ovulated eggs at one of the following stages: (1) the time of sperm entry, (2) early pronuclear stage, (3) pronuclear DNA synthesis, (4) prior to first cleavage division, (5) early 2-cell stage, or (6) prior to the second cleavage division. Little or no effect was observed for treatment times other than the time of sperm entry, when the egg is being activated to complete the second meiotic division. Remarkably high frequencies of embryonic lethality, expressed at around the time of implantation, were induced at this stage. Cytogenetic analysis of first cleavage metaphases of zygotes treated at the time of sperm entry revealed a high incidence of varied numerical chromosome anomalies, with changes in ploidy being predominant.  相似文献   

8.
The morphology of mitochondrial nucleoids (mt-nucleoids), mitochondria, and nuclei was investigated during meiosis and sporulation of the diploid cells of the ascosporogenic yeast Saccharomycodes ludwigii. The mt-nucleoids appeared as discrete dots uniformly distributed in stationary-phase cells as revealed by 4',6-diamidino-2-phenylindole (DAPI) staining. Throughout first and second meiotic divisions, the mt-nucleoids moved to be located close to the dividing nuclei with the appearance of dots. On the other hand, mitochondria, which had tubular or fragmented forms in stationary-phase cells, increasingly fused with each other to form elongated mitochondria during meiotic prophase as revealed by 3,3' -dihexyloxacarbocyanine iodide [DiOC(6)(3)] staining. Mitochondria assembled to be located close to dividing nuclei during first and second meiotic divisions, and were finally incorporated into spores. During the first meiotic division, nuclear division occurred in any direction parallel, diagonally, or perpendicular to the longitudinal axis of the cell. In contrast, the second meiotic division was exclusively parallel to the longitudinal axis of the cell. The behavior of dividing nuclei explains the formation of a pair of spores with opposite mating types at both ends of cells. In the course of this study, it was also found that ledges between two spores were specifically stained with DiOC(6)(3).  相似文献   

9.
The sulfhydryl content of protein and the tension at the surface were measured for starfish oocytes from the first meiotic division to the cleavage stage. A cyclic change in both the protein-SH and the tension at the surface was found to accompany the division cycle, including the first and second meiotic divisions. It is concluded that the unequal meiotic divisions share the same character with the equal divisions of cleavage, with respect to changes both in the protein-SH and the tension at the surface.  相似文献   

10.
BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.  相似文献   

11.
Previous studies on flagellar growth in round spermatids from Cynops and Xenopus in vitro have shown that the period and rate of flagellar growth are greater in Cynops than in Xenopus. The present study shows, however, that during the initial phase of flagellar growth (for the first 12 h following the second meiotic division), the growth rate is very similar in both Cynops and Xenopus (0.5-0.6 microns/h at 22 degrees C). The difference in the growth rate between Cynops and Xenopus was observed beyond 12 h following the second meiotic division. When round spermatids in both species were inoculated with 10 microM cycloheximide, flagella grew at the same rate as in the absence of cycloheximide for the first 12 h following the second meiotic division. Beyond 12 h, however, cycloheximide suppressed flagellar growth in round spermatids in both species. These results indicate that the initial flagellar growth in round spermatids is provided for by flagellar protein pools which were present just after the second meiotic division; the growth beyond 12 h in round spermatids is contributed by newly synthesized flagellar proteins.  相似文献   

12.
Summary Of 61 families of children with trisomy 21, polymorphism of chromosome 21 elucidating the origin of the extra chromosome was found in 42. Nondisjunction was of paternal origin in 8 cases (19.04%) and the anomaly occurred with equal frequency during the first and second meiotic divisions. Maternal nondisjunction was demonstrated in 34 cases (80.95%), in which nondisjunction occurred by far the most often during the first meiotic division (29 cases).These results are in agreement with data from the literature, and suggest the existence of at least two different causes for chromosomal nondisjunction, the first being the same in both sexes and occurring in both meiotic divisions and the second specifically limited to the first meiotic division in the mother.Attachée de Recherche au CNRSAttachée de Recherche à l'INSERM  相似文献   

13.
In Peridinium inconspicuum Lemmermann, sexual reproduction occurs in both nitrogen-enriched and nitrogen-deficient media. In this homothallic strain, protoplasmic fusion begins between two thecate gametes; but zygote formation is completed in a space outside the fusing pair. This diploid cell can form a plated theca which is shed as the cell enlarges. This spherical zygote then forms a new non-plated theca. The process of ecdysis and the formation of a new non-plated theca is repeated several times. During this process the zygote gradually elongates and by cytoplasmic infurrowing becomes peanut-shaped. Eventually two cells are formed. The first and second meiotic divisions are greatly separated in time. The first meiotic division occurs in the spherical non-thecate zygote. The second meiotic division can occur in the peanut-shaped zygote before it completes cytokinesis. This meiotic division may not be synchronous, occasionally resulting in a trinucleate stage. Eventually four flagellated, haploid products are produced.  相似文献   

14.
A high frequency of parthenogenetic activation occurs when ovulated mouse oocytes are briefly exposed to a dilute solution of ethanol in vitro. Cytogenetic analyses of parthenogenones at metaphase of the first cleavage division have confirmed that parthenogenetic activation, per se, does not increase the incidence of chromosome segregation errors during the completion of the second meiotic division. Ethanol-induced activation, however, significantly increases the incidence of aneuploidy. The ultrastructural changes that occur in the morphology and organization of the second meiotic spindle apparatus in ethanol- and hyaluronidase-activated oocytes is reported here. Abnormalities in the arrangement of microtubule arrays and chromosome position were principally observed in ethanol-activated oocytes at anaphase and telophase of the second meiotic division, but were only rarely observed in hyaluronidase-activated oocytes. It is proposed that the abnormalities in spindle morphology and chromosome displacement observed in ethanol-activated oocytes represent the initial events that lead to chromosome segregation errors following exposure to this agent.  相似文献   

15.
Summary Macrosporogenesis and microsporogenesis were investigated in a diploid S. tuberosum x S. chacoense potato hybrid, characterized by more than 50% 2n egg formation. Fifty-five percent of dyad formation of 2n macrospores is ascribed to two meiotic abnormalities: omission of the second meiotic division, occurring at a frequency of 38%, and irregular spindle axis orientation at metaphase I at a frequency of 16%: These abnormalities give origin to a mixture of 2n eggs, composed of mostly second division restitution (SDR) and a small portion of first division restitution (FDR). Microsporogenesis showed rare dyads of 2n microspores depending on parallel spindles observed in anaphase II.Contribution no. 53 from the Center of Vegetable Breeding, CNR, Portici, Italy  相似文献   

16.
A modified enzyme digestion technique of ovary isolation followed by staining and squash preparation has allowed us to observe female meiosis in normal maize meiotically dividing megaspore mother cells (MMCs). The first meiotic division in megasporogenesis of maize is not distinguishable from that in mi-crosporogenesis. The second female meiotic division is characterized as follows: (1) the two products of the first meiotic division do not simultaneously enter into the second meiotic division; as a rule, the chalazal-most cell enters division earlier than the micropylar one, (2) often the second of the two products does not proceed with meiosis, but degenerates, and (3) only a single haploid meiotic product of the tetrad remains alive, and this cell proceeds with three rounds of mitoses without any intervening cell wall formation to produce the eight-nucleate embryo sac. This technique has allowed us to study the effects of five meiotic mutations (aml, aml-pral, afdl, dsy *-9101, and dvl) on female meiosis in maize. The effects of the two alleles of the aml gene (aml and aml-pral) and of the afdl and dsy *-9101mutations are the same in both male and female meiosis. The aml allele prevents the entrance of MMCs into meiosis and meiosis is replaced by mitosis; the aml-pral permits MMCs to enter into meiosis, but their progress is stopped at early prophase I stages. The afdl gene is responsible for substitution of the first meiotic (reductional) division by an equational division including the segregation of sister chromatid centromeres at anaphase I. The dsy * -9101 gene exhibits abnormal chromosome pairing; paired homologous chromosomes are visible at pachytene, but only univalents are observed at diakinesis and metaphase I stages. These mutation specific patterns of abnormal meiosis are responsible for the bisexual sterility of these meiotic mutants. The abnormal divergent shape of the spindle apparatus and the resulting abnormal segregation of homologous chromosomes observed in micro-sporogenesis in plants homozygous for the dv1 mutation have not been found in meiosis of megasporogenesis. Only male sterility is induced by the dv1 gene in the homozygous condition. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Summary Salamander spermatocytes were isolated in a modified Eagle's medium in Rose Chambers. The behavior of the spermatocytes during meiosis was recorded on a time lapse, phase contrast film. The two meiotic divisions progressed without visible irregularities in freshly isolated spermatocytes. Times required for the various meiotic events were obtained. Spermatocytes four days in vitro carried out the first meiotic division, but there were many abnormalities and the second meiotic division did not occur. At first meiotic metaphase, whole bivalent oscillations were accompanied by a relatively higher frequency oscillatory movement of the two homologous kinetochore regions. Oscillations of the kinetochore region were independently variable in magnitude and frequency. A system is proposed by which the metaphase bivalent movements are explained in terms of two pulling forces acting with variable intensity and frequency in opposite directions at the two homologous kinetochores. Meiosis in heavily compressed spermatocytes was blocked at the first meiotic metaphase, apparently because of the absence of a bipolar meiotic apparatus. In compressed spermatocytes, the centrosome divided but the two resulting centrosomes failed to reach their definitive polar positions. After about two hours of separation, the two centrosomes reversed their movement and fused to form a single centrosome from which a unipolar half-spindle radiated.This investigation was supported by grant GB-15 from the National Science Foundation and by Public Health Service Research Grant GB 12431-02 from the Division of General Medical Sciences.Deceased June 17, 1964.  相似文献   

18.
ABSTRACT The development of an immature oocyte into a fertilizable gamete is a process known as meiotic maturation. In vertebrates, it corresponds to the transition from the prophase arrest of the first meiotic division (usually considered as a late G2 phase) to the metaphase arrest of the second meiotic division. This transition is controlled by modulating the activity of the cyclin B-Cdc2 complex, MPF (M-phase promoting factor), the universal regulator of the G2/M transition. Meiotic maturation of frog oocytes is triggered by steroid hormones through a rapid, necessary and sufficient suppression of PKA and requires ongoing protein synthesis. A long-standing question has been to identify key protein(s) required to trigger the activation of MPF in response to the hormonal signal. Here we will discuss data supporting the view that steroids bring about meiotic maturation through functionally redundant pathways involving synthesis of Mos or of cyclin proteins, reinforcing the robustness of the system.  相似文献   

19.
Ontogeny of the meiotic spindle in hornworts was studied by light microscopy of live materials, transmission electron microscopy, and indirect immunofluorescence microscopy. As in monoplastidic meiosis of mosses and Isoetes, the single plastid divides twice, and the four resultant plastids migrate into the future spore domains where they organize a quadripolar microtubule system (QMS). Additionally, a unique axial microtubule system (AMS) was found to parallel the plastid isthmus at each division in meiosis, much as in the single plastid division of mitosis. This finding is used to make a novel comparison of mitotic and meiotic spindle development. The AMS contributes directly to development of the mitotic spindle, whereas ontogeny of the meiotic spindle is more complex. Nuclear division in meiosis is delayed until after the second plastid division; the first AMS disappears without spindle formation, and the two AMSs of the second plastid division contribute to development of the QMS. Proliferation of microtubules at each plastid results in the QMS consisting of four cones of microtubules interconnecting the plastids and surrounding the nucleus. The QMS contributes to the development of a functionally bipolar spindle. The meiotic spindle is comparable to a merger of two mitotic spindles. However, the first division spindle does not terminate in what would be the poles of mitosis; instead the poles converge to orient the spindle axis midway between pairs of non-sister plastids.  相似文献   

20.
Summary The parental origin of the additional sex chromosome was studied in 47 cases with an XXY sex chromosome consitution. In 23 cases (49%), the error occurred during the first paternal meiotic division. Maternal origin of the additional chromosome was found in the remaining 24 cases (51%). Centromeric homo- versus heterozygosity could be determined in 18 out of the 24 maternally derived cases. According to the centromeric status and recombination rate, the nondisjunction was attributable in 9 cases (50%) to an error at the first maternal meiotic division, in 7 cases (39%) to an error at the second maternal meiotic division and in 2 cases (11%) to a nullo-chiasmata nondisjunction at meiosis II or to postzygotic mitotic error. No recombination, and in particular none in the pericentromeric region, was found in any of the 9 cases due to nondisjunction at the first maternal meiotic division. Significantly increased paternal age was found in the paternally derived cases. Maternal age was significantly higher in the maternally derived cases due to a meiotic I error compared with those due to a meiotic II error. There were no significant clinical differences between patients with respect to the origin of the additional X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号