共查询到20条相似文献,搜索用时 0 毫秒
1.
Stimulation of human synovial fibroblast plasminogen activator production by mononuclear cell supernatants 总被引:8,自引:0,他引:8
Conditioned medium from concanavalin A-stimulated human peripheral blood mononuclear cells (c-MCCM) stimulates the plasminogen activator (PA) production of nonrheumatoid human synovial fibroblasts obtained from explant cultures. The effect of this synovial fibroblast-stimulating activity is observed within 2 to 4 hr and requires RNA and protein synthesis. Reversible morphological changes in the synovial cells can be observed as a result of c-MCCM action. These enzymatic and morphologic changes are similar to some of the effects of transforming viruses and tumor promoters on target cells. The possible significance of these data for an understanding of the cellular interactions involved in the formation and function of the rheumatoid "pannus" is discussed. 相似文献
2.
The second messengers and protein kinases involved in the induction of type I plasminogen activator inhibitor (PAI-1) synthesis by various agents were evaluated in cultured bovine aortic endothelial cells. Phorbol myristate acetate (PMA) induced PAI-1 in these cells implicating the protein kinase C (PK-C) pathway. However, bradykinin, which also activates PK-C in bovine aortic endothelial cells, did not induce PAI-1. Moreover, when PK-C was down-regulated by PMA pretreatment, subsequent induction of PAI-1 by transforming growth factor beta (TGF beta) and tumor necrosis factor alpha (TNF alpha) was unaltered, and induction by lipopolysaccharide (LPS) was decreased by only 50%. LPS increased phospholipid second messengers which can activate PK-C but TGF beta and TNF alpha did not. Agents which increase cAMP, (e.g., forskolin and isobutylmethylxanthine) blocked the induction of PAI-1 synthesis by PMA, LPS, TGF beta and TNF alpha suggesting that induction may occur by lowering cAMP. This possibility seems unlikely since cAMP levels did not change in response to any of these agents. Moreover, somatostatin lowered cAMP but did not induce PAI-1. PAI-1 was not induced by treating the cells with cGMP, Na+/H+ ionophore and calcium ionophore or arachidonic acid. 相似文献
3.
Catabolism of tissue-type plasminogen activator by the human hepatoma cell line Hep G2. Modulation by plasminogen activator inhibitor type 1 总被引:3,自引:0,他引:3
P A Morton D A Owensby B E Sobel A L Schwartz 《The Journal of biological chemistry》1989,264(13):7228-7235
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte. 相似文献
4.
The human U373 glioblastoma/astrocytoma cell line was found to constitutively produce and secrete a plasminogen activator and a plasminogen activator inhibitor. The plasminogen activator was identified as urokinase based on apparent molecular weight, immunoblotting with anti-urokinase antibodies, and Northern blotting with a human urokinase cDNA probe. The inhibitor secreted by U373 cells was found to be related to the PAI-1 molecule based on reactivity with anti-human PAI-1 antibodies, apparent molecular weight, and Northern blot analysis with a human PAI-1 cDNA probe. The expression of both urokinase and the PAI-1-like molecule by U373 cells could be modulated by phorbol myristate acetate or by inflammatory mediators such as interferon-gamma and interleukin-1. In the case of interleukin-1, the alpha form exhibited no detectable effect while the beta form not only elevated inhibitor levels, it also appeared to induce the production of tissue plasminogen activator. Thus, in these cells interleukin-1 beta induces alterations in PA and PAI expression and interleukin-1 alpha does not, even though the two forms are reported to utilize the same cellular receptor. 相似文献
5.
Platelet plasminogen activator inhibitor: purification and characterization of interaction with plasminogen activators and activated protein C 总被引:1,自引:0,他引:1
Plasminogen activator inhibitor (PAI) was purified in active form from porcine platelets under nondenaturing conditions. The purified inhibitor (Mr 47,000) reacts with tissue-type plasminogen activator (t-PA), urokinase (UK), and activated protein C (APC) to yield both SDS-stable complexes and a modified PAI of slightly reduced molecular weight. The second-order rate constants for the inhibition of t-PA and UK by PAI are 3.5 X 10(7) and 3.4 X 10(7) M-1 s-1, respectively. Activated protein C reacts with PAI with a second-order rate constant of 1.1 X 10(4) M-1 s-1. This rate is not accelerated by protein S, phospholipid, and calcium, or heparin. It is concluded that (1) PAI can function as both inhibitor and substrate of its target proteases, (2) if APC promotes fibrinolysis via inactivation of PAI, then APC must be present in concentrations several orders of magnitude greater than t-PA, or the interaction of APC and PAI must be accelerated by presently unknown mechanisms, and (3) in the absence of heparin, platelet PAI is the most rapid inhibitor of APC yet described. 相似文献
6.
7.
The stimulation of human synovial fibroblast plasminogen activator activity. Involvement of cyclic AMP and cyclooxygenase products 总被引:2,自引:0,他引:2
The plasminogen activator activity of human synovial fibroblasts is raised by a monocyte-derived polypeptide, synovial activator and also by all-trans retinoic acid. The elevation of the synovial cell plasminogen activator activity by the two stimuli is potentiated both by agents which can raise cellular cyclic AMP levels, namely prostaglandin E2, cholera toxin and 3-isobutyl-1-methylxanthine, and also by exogenous 8-bromocyclic AMP. These findings suggest that there might be a substrate, which is phosphorylated by a cyclic AMP-dependent protein kinase and which is important in the modulation of the synovial cell plasminogen activator activity by the two stimuli. Prostanoids can be important in the stimulation of the synovial fibroblast plasminogen activator activity by mononuclear cell supernatants, since indomethacin can inhibit the increase in proteinase activity. 相似文献
8.
Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3 总被引:7,自引:0,他引:7
M J Heeb F Espa?a M Geiger D Collen D C Stump J H Griffin 《The Journal of biological chemistry》1987,262(33):15813-15816
Purified plasma and urinary protein C inhibitors (PCI) formed heparin-dependent complexes with activated protein C (APC) which were detected by immunoblotting after nondenaturing gel electrophoresis. Bands representing APC.PCI complexes were also seen on immunoblots after incubation of plasma with APC and heparin. The same immunoblot pattern of complexes was detected by three different methods: method A, monoclonal antibody to plasminogen activator inhibitor-3 (PAI-3, urinary urokinase inhibitor) + 125I-labeled anti-mouse IgG; method B, polyclonal antibodies to PCI + 125I-labeled purified plasma PCI; and method C, monoclonal antibody to protein C + 125I-protein C. Plasma depleted of PAI-3 by immunoadsorption with insolubilized monoclonal antibody to PAI-3 showed no detectable antigen or complexes with APC as visualized by methods A or B. This PAI-3-depleted plasma had less than 10% of the heparin-dependent inhibitory activity of normal plasma toward APC. Purified plasma PCI was fully reactive in an enzyme-linked immunoabsorbent assay for PAI-3, and plasma and urinary PCI inhibited urokinase activity in a heparin-dependent manner. These data indicate that heparin-dependent plasma and urinary PCI and PAI-3 are immunologically and functionally very similar if not identical. This observation identifies a new interrelation between the protein C anticoagulant and the fibrinolytic systems. In addition, plasma contains a heparin-independent inhibitor of APC which is not immunologically related to plasma PCI or to PAI-3. 相似文献
9.
J Keijer H J Ehrlich M Linders K T Preissner H Pannekoek 《The Journal of biological chemistry》1991,266(16):10700-10707
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators. 相似文献
10.
Excessive activation of N-methyl-D-aspartate (NMDA) receptors leads to cell death in human embryonic kidney-293 (HEK) cells which have been transfected with recombinant NMDA receptors. To evaluate the role of protein kinase C (PKC) activation in NMDA-mediated toxicity, we have analyzed the survival of transfected HEK cells using trypan blue exclusion. We found that NMDA-mediated death of HEK cells transfected with NR1/NR2A subunits was increased by exposure to phorbol esters and reduced by inhibitors of PKC activation, or PKC down-regulation. The region of NR2A that provides the PKC-induced enhancement of cell death was localized to a discrete segment of the C-terminus. Use of isoform-specific PKC inhibitors showed that Ca(2+)- and lipid-dependent PKC isoforms (cPKCs), specifically PKCbeta1, was responsible for the increase in cell death when phorbol esters were applied prior to NMDA in these cells. PKC activity measured by an in vitro kinase assay was also increased in NR1A/NR2A-transfected HEK cells following NMDA stimulation. These results suggest that PKC acts on the C-terminus of NR2A to accentuate cell death in NR1/NR2A-transfected cells and demonstrate that this effect is mediated by cPKC isoforms. These data indicate that elevation of cellular PKC activity can increase neurotoxicity mediated by NMDA receptor activation. 相似文献
11.
12.
13.
Ahmed W Malik M Saeed I Khan AA Sadeque A Kaleem U Ahmed N Ajmal M Azam M Qamar R 《Molecular biology reports》2011,38(4):2541-2548
A case–control association study on 229 Myocardial Infarction (MI) patients and 217 healthy controls was carried out to determine
the role of tissue-plasminogen activator (t-PA) (Alu-repeat insertion (I)/deletion (D)) and plasminogen activator inhibitor
(PAI-1) (4G/5G insertion/deletion) polymorphisms with MI in the Pakistani population. In MI patients the genotype distribution
of the PAI-1 gene was not found to be different when compared with the unaffected controls (P > 0.05, χ2 = 1.03). The risk allele 4G was also not associated with MI (P > 0.05, χ2 = 0.46, odds ratio (OR) = 1.1 (95% confidence interval (CI) = 0.84–1.43), P > 0.05). Similarly, the genotype frequencies of t-PA I/I, I/D and D/D were not different from the unaffected controls (P > 0.05, χ2 = 1.60), and the risk allele “I” was not found to be associated with MI (P > 0.05, χ2 = 1.35, OR = 0.86 (95% CI = 0.66–1.11), P > 0.05). However, when the data were distributed along the lines of gender a significant association of the 4G/4G PAI-1 genotype
was observed with only the female MI patients (P < 0.05, z-test = 2.21). When the combined genotypes of both the polymorphisms were analyzed, a significant association of
MI was observed with the homozygous DD/4G4G genotype (P < 0.01, z-test = 2.61), which was specifically because of the female samples (P = 0.01, z-test = 2.53). In addition smoking (P < 0.001, χ2 = 13.52, OR = 3.45 (95% CI = 1.77–6.94)), diabetes (P < 0.001, χ2 = 22.45, OR = 8.89 (95% CI = 2.96–29.95)), hypertension (OR = 7.76 (95% CI = 2.88–22.68), P < 0.001) family history (P < 0.001, χ2 = 13.72, OR = 3.7 (95% CI = 1.71–8.18)) and lower HDL levels (P < 0.05) were found to be significantly associated with the disease. In conclusion the PAI-1 gene polymorphism was found to
have a gender specific role in the female MI patients. 相似文献
14.
Epidermal growth factor-induced phosphoinositide hydrolysis. Modulation by protein kinase C 总被引:2,自引:0,他引:2
A short-term treatment with phorbol 12,13-dibutyrate (PDBu) was found to inhibit totally the epidermal growth factor (EGF)-stimulated phosphoinositide hydrolysis in A431 cells, whereas long-term pretreatment with PDBu, which is known to down regulate protein kinase C, induced a greater accumulation of the EGF-triggered inositol phosphate accumulation, particularly of Ins(1,3,4,5)P4. The increased Ins(1,4,5)P3/Ins(1,3,4,5)P4 formation in the PDBu long-term pretreated cells was coincident with the increased Ca2+ influx stimulated by EGF in the same cells. Since long-term pretreatment with PDBu was found to enhance the EGF signals, an explanation for the synergism between EGF and phorbol esters in the induction of DNA synthesis is provided. 相似文献
15.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C. 相似文献
16.
Isolated protein kinase C (PKC) was irreversibly inactivated by a brief (min) incubation with calphostin C in the presence of light. This inactivation required Ca2+ either in a millimolar range in the absence of lipid activators or in a submicromolar range in the presence of lipid activators. In addition, an oxygen atmosphere was required suggesting the involvement of oxidation(s) in this inactivation process. Furthermore, PKC inactivation might involve a site-specific oxidative modification of the enzyme at the Ca(2+)-induced hydrophobic region. Physical quenchers of singlet oxygen such as lycopene, beta-carotene, and alpha-tocopherol all reduced the calphostin C-induced inactivation of PKC. In intact cells treated with calphostin C, the inactivation of PKC was rapid in the membrane fraction compared to cytosol. This intracellular PKC inactivation was also found to be irreversible. Therefore, calphostin C can bring prolonged effects for several hours in cells treated for a short time. Taken together these results suggest that the calphostin C-mediated inactivation of PKC involves a site-specific and a 'cage' type oxidative modification of PKC. 相似文献
17.
Mixtures of maltose palmitates containing predominantly maltose tetrapalmitate (designated MTP) possess immune potentiating and antitumor properties. Immune potentiation derives from macrophage activation and B lymphocyte mitogenicity and antitumor action from anti-angiogenic activity. Their mode of action at the cellular level is not known. Since high performance liquid chromatography (HPLC) provided purified maltose palmitates, we tested whether they individually and as a mixture could modulate activity of protein Kinase C (PKC), an enzyme implicated in mitogenic and release reactions. MTP activated crude lymphocyte and purified brain PKC in the absence of phosphatidyl serine (PS). It also augmented labeled dibutyryl phorbol (PDBu) binding to the brain enzyme in the absence of phospholipid. HPLC purified maltose tetrapalmitates (two isomers) were insoluble in aqueous solvent, and activated PKC slightly after incorporation into PS liposomes. Purified maltose di- and tri-palmitates were inhibitory to the enzyme. The activation of PKC was, therefore, due to higher saturated maltose palmitates, well dispersed by less substituted maltose palmitates acting as emulsifiers. 相似文献
18.
M C Calcerrada M J Pérez-Alvarez R E Catalán A M Martínez 《Prostaglandins & other lipid mediators》1999,58(1):19-27
The effect of platelet activating factor (PAF) on subcellular distribution of protein kinase C isoforms in rat cerebral cortex was investigated. PAF induced an increase in levels of protein kinase C epsilon and gamma in membrane fraction. Results also indicate that PAF induced an increase in protein kinase C delta levels in both cytosolic and membrane fraction. This effect is possibly due to an increase in enzyme synthesis, as indicated by the results obtained from the experiments performed in the presence of cycloheximide and actinomycin. All the effects induced by PAF were time- and dose-dependent, and were mediated through the activation of PAF receptor. These findings indicate that the three isoforms may be involved in signal transduction of PAF in the brain. 相似文献
19.
Cytokine activation of vascular endothelium. Effects on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor 总被引:26,自引:0,他引:26
R R Schleef M P Bevilacqua M Sawdey M A Gimbrone D J Loskutoff 《The Journal of biological chemistry》1988,263(12):5797-5803
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity. 相似文献
20.
Neoplastic cells, transformed cells and some normal mammalian cells secrete large amounts of plasminogen activator (PA), an arginine-specific protease which converts plasminogen to plasmin. To study the regulation of PA, we have obtained two classes of mouse-human somatic cell hybrids. PG19, a mouse PA+ cell line, was fused with C32 (human PA+) or human diploid fibroblasts (PA?). All hybrids secreted PA. Human- and mouse-specific forms of PA were distinguished in these hybrids by electrophoretic methods. While all hybrids produced the murine PA, many produced the human PA and some did not. All hybrids which produced human PA had chromosome 6 in common. The absence of each of the other human chromosomes did not affect PA expression, while the absence of chromosome 6 correlated with the lack of human PA. We conclude that chromosome 6 carries the structural gene for human PA. These experiments also show that the fusion of mouse PA+ cells with human PA-cells results in the activation of the human PA gene. 相似文献