首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last few years, there is an increasing interest in the role of the epicardium in cardiac development, myocardial remodelling or repair and regeneration. Several types of cells were described in the subepicardial loose connective tissue, beneath the epicardial mesothe-lium. We showed previously (repeatedly) the existence of interstitial Cajal-like cells (ICLCs) in human and mammalian myocardium, either in atria or in ventricles. Here, we describe ICLCs in adult mice epicardium and primary culture as well as in situ using frozen sections. The identification of ICLCs was based on phase contrast microscopy and immunophenotyping. We found cells with characteristic morphologic aspects: spindle-shaped, triangular or polygonal cell body and typical very long (tens to hundreds micrometres) and very thin cyto-plasmic processes, with a distinctive 'beads-on-a-string' appearance. The dilations contain mitochondria, as demonstrated by MitoTracker Green FM labelling of living cells. Epicardial ICLCs were found positive for c-kit/CD117 and/or CD34. However, we also observed ICLCs positive for c-kit and vimentin. In conclusion, ICLCs represent a distinct cell type in the subendocardium, presumably comprising at least two subpopulations: ( i ) c-kit/CD34-positive and ( ii ) only c-kit-positive. ICLCs might be essential as progenitor (or promoter) cells for developing cardiomyocyte lineages in normal and/or injured heart.  相似文献   

2.
3.
Traditional interstitial cells of Cajal (ICC) are present in the digestive tube and are supposed to act as pacemakers and neuromodulators. However, interstitial Cajal-like cells (ICLCs) were found outside the gastrointestinal tract, in various organs (e.g. ureter, bladder, fallopian tube, uterus, pancreas, mammary gland, myocardium etc.) and looking for such ICLC is a priority in our laboratories.We report here unequivocal visual evidence that ICLCs are present in the mesenchymal tissue of the villi from human term placenta.The following methods were used: a. vital staining with methylene blue (cryosections); b. silver impregnation (paraffin sections); c. Epon-embedded sections (approximately 1 microm) of glutaraldehyde/osmium fixed tissue, stained with toluidine blue; d. primary cell cultures (or second-passage cells) to reveal the characteristic, very long, moniliform cell processes and mitochondrial localization at dilations (molecular fluorescence probe: Mito Tracker Green); e. immunofluorescence for c-kit/CD117 marker or other characteristic proteins; f. transmission electron microscopy to establish the identity of ICLC.  相似文献   

4.
A novel type of interstitial tissue cells in the biliary tree termed telocytes (TCs), formerly known as interstitial Cajal‐like cells (ICLCs), exhibits very particular features which unequivocally distinguish these cells from interstitial cells of Cajal (ICCs) and other interstitial cell types. Current research substantiates the existence of TCs and ICCs in the biliary system (gallbladder, extrahepatic bile duct, cystic duct, common bile duct and sphincter of Oddi). Here, we review the distribution, morphology and ultrastructure of TCs and ICCs in the biliary tree, with emphasis on their presumptive roles in physiological and pathophysiological processes.  相似文献   

5.
We have previously reported (Hinescu & Popescu, 2005) the existence of interstitial Cajal-like cells (ICLC), by transmission electron microscopy, in human atrial myocardium. In the present study, ICLC were identified with non-conventional light microscopy (NCLM) on semi-thin sections stained with toluidine blue and immunohistochemistry (IHC) for CD117/c-kit, CD34, vimentin and other additional antigens for differential diagnosis. Quantitatively, on semi-thin sections, ICLC represent about 1-1.5% of the atrial myocardial volume (vs. approximately 45% working myocytes, approximately 2% endothelial cells, 3-4% for other interstitial cells, and the remaining percentage: extracellular matrix). Roughly, there is one ICLC for 8-10 working atrial myocytes in the intercellular space, beneath the epicardium, with a characteristic (pyriform, spindle or triangular) shape. These ICLC usually have 2-3 definitory processes, emerging from cell body, which usually embrace atrial myocytes (260 nm average distance plasmalemma/sarcolemma) or establish close contact with nerve fibers or capillaries (approximately 420 nm average distance to endothelial cells). Cell prolongations are characteristic: very thin (mean thickness = 0.15+/-0.1 microm), very long for a non-nervous cell (several tens of microm) and moniliform (uneven caliber). Stromal synapses between ICLC and other interstitial cells (macrophages) were found (e.g. in a multicontact type synapse, the average synaptic cleft was approximately 65 nm). Naturally, the usual cell organelles (mitochondria, smooth and rough endoplasmic reticulum, intermediate filaments) are relatively well developed. Caveolae were also visible on cell prolongations. No thick filaments were detected. IHC showed that ICLC were slightly and inconsistently positive for CD117/c-kit, variously co-expressed CD34 and EGF receptor, but appeared strongly positive for vimentin, along their prolongations. Some ICLC seemed positive for a-smooth muscle actin and tau protein, but were negative for nestin, desmin, CD13 and S-100. In conclusion, we provide further evidence of the existence of ICLC in human atrial myocardium, supporting the possible ICLC role in pacemaking, secretion (juxta- and/or paracrine), intercellular signaling (neurons and myocytes). For pathology, ICLC might as well be 'players' in arrhythmogenesis and atrial remodeling.  相似文献   

6.
We show the existence of a novel type of interstitial cell-telocytes (TC) in mouse trachea and lungs. We used cell cultures, vital stainings, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and immunohistochemistry (IHC). Phase contrast microscopy on cultured cells showed cells with unequivocally characteristic morphology of typical TC (cells with telopodes-Tp). SEM revealed typical TC with two to three Tp-very long and branched cell prolongations. Tp consist of an alternation of thin segments (podomers) and thick segments (podoms). The latter accommodate mitochondria (as shown by Janus Green and MitoTracker), rough endoplasmic reticulum and caveolae. TEM showed characteristic podomers and podoms as well as close relationships with nerve endings and blood capillaries. IHC revealed positive expression of TC for c-kit, vimentin and CD34. In conclusion, this study shows the presence in trachea and lungs of a peculiar type of cells, which fulfils the criteria for TC.  相似文献   

7.
The existence of a new type of interstitial cells in the heart namely, interstitial Cajal-like cells (ICLC), has been described for the first time by Hinescu and Popescu in 2005. This study was then followed by an ascending trend of publications regarding the morphology, phenotype and distribution of myocardial ICLC in diverse species including human patients. Recently the new term ‘telocytes’ has been proposed for cells formerly known as ICLC, and the term ‘telopodes’ has been proposed for the prolongations of these cells. The identification of these cells is based on ultrastructural criteria. In addition, telocyters/telyopodes can be identified by several complementary approaches including methylene blue vital staining, silver impregnation and immunoreactivity against CD117/c-kit, vimentin, etc. This point of view presents critical data existing in literature, as well as own results, which unequivocally provide compelling evidence that telocytes are a new distinct cellular entity of myocardial interstitium. Several presumable functions of the myocardial telocytes are discussed: (i) intercellular signalling, (ii) cardiac repair/remodelling and (iii) stem cell nursing in cardiac renewal.  相似文献   

8.
Hepatic interstitial cells play a vital role in regulating essential biological processes of the liver. Telocytes (TCs), a novel type of interstitial cells firstly identified by Popescu and his coworkers, have been reported in many tissues and organs, but not yet in liver (go to http://www.telocytes.com ). We used transmission electron microscopy and immunofluorescence (double labelling for CD34 and c‐kit/CD117, or vimentin, or PDGF Receptor‐α, or β) to provide evidence for the existence of TCs in mice liver. The distribution of TCs in liver was found to be of similar density in the four hepatic lobes. In conclusion, here we show the presence of TCs in mice liver. It remains to be determined the possible roles of TCs in the control of liver homeostasis and regeneration, the more so as a close special relationship was found between TCs and hepatic putative stem (progenitor) cells.  相似文献   

9.
We present here visual evidence for the existence of a new type of interstitial cells in human atrial myocardium: interstitial Cajal-like cells (ICLC). These cells fulfil the so-called 'platinum standard' (a set of 10 ultrastructural criteria for the positive diagnosis of ICLC). Conventional transmission electron microscopy (TEM), followed by reconstructions from serial photomicrographs, revealed typical ICLC with 2 or 3 long, moniliform processes (several tens of micrometers long and 0.1-0.5 microm thick), emerging from the (small) cell body. Cell processes dichotomously branch and have mitochondria (at the level of dilations), caveolae and Ca(2+) release units. Cell prolongations establish close spatial relationships between each other, as well as with capillaries, myocardial cells, and other connective tissue cells. Our preliminary data suggest that ICLC exist in rat ventricular myocardium, too.  相似文献   

10.
We compared, by transmission electron microscopy (TEM), the ultrastructure of interstitial Cajal-like cells (ICLC) in normal mammalian myocardium versus caveolin-1 null mice. TEM showed that myocardial ICLCs of caveolin-1-deficient mice retain their main ultrastructural characteristics, for example, location among cardiomyocytes, close vicinity to nerves and/or blood capillaries, specialized cell-to-cell junctions, presence of 2–3 typical processes, which are very long (several tens of micrometres), but are very thin (0.1–0.2 μm) and moniliform. However, the most striking modification of myocardial ICLC in caveolin-1 KO mice was the absence of caveolae . Beyond this main observation, three other findings could be reported: (1) the absence of caveolae in capillary endothelium, (2) persistence of (some) caveolae at the level of cardiomyocte sarcolemma or vascular smooth muscle cell sarcolemma and (3) (un)expected ultrastructural modifications such as increased thickness of capillary basement membrane and increased autophagy of several cardiomyocytes.  相似文献   

11.
Telocytes (TCs), a particular interstitial cell type, have been recently described in a wide variety of mammalian organs ( www.telocytes.com ). The TCs are identified morphologically by a small cell body and extremely long (tens to hundreds of μm), thin prolongations (less than 100 nm in diameter, below the resolving power of light microscopy) called telopodes. Here, we demonstrated with electron microscopy and immunofluorescence that TCs were present in human dermis. In particular, TCs were found in the reticular dermis, around blood vessels, in the perifollicular sheath, outside the glassy membrane and surrounding sebaceous glands, arrector pili muscles and both the secretory and excretory portions of eccrine sweat glands. Immunofluorescence screening and laser scanning confocal microscopy showed two subpopulations of dermal TCs; one expressed c‐kit/CD117 and the other was positive for CD34. Both subpopulations were also positive for vimentin. The TCs were connected to each other by homocellular junctions, and they formed an interstitial 3D network. We also found TCs adjoined to stem cells in the bulge region of hair follicles. Moreover, TCs established atypical heterocellular junctions with stem cells (clusters of undifferentiated cells). Given the frequency of allergic skin pathologies, we would like to emphasize the finding that close, planar junctions were frequently observed between TCs and mast cells. In conclusion, based on TC distribution and intercellular connections, our results suggested that TCs might be involved in skin homeostasis, skin remodelling, skin regeneration and skin repair.  相似文献   

12.
We show here that methylene-blue supravital staining of specimens from normal human mammary gland reveals (selectively) interstitial (stromal) cells, with 2-3 long (20-80 microm), thin, moniliform processes. Such cells appear c-kit/CD117 positive, either by immunohistochemistry (IHC) or immunofluorescence (IF). Since these features (affinity for methylene blue, c-kit positivity, and characteristic processes) define archetypal interstitial cells of Cajal (ICC) in light microscopy, our results suggest the existence of Cajal-like cells in the interstitium of human normal mammary gland.  相似文献   

13.
Despite the evidence accumulated over the past decade that telocytes (TCs) are a distinctive, though long neglected, cell entity of the stromal microenvironment of several organs of the human body, to date their localization in the endocrine glands remains almost unexplored. This study was therefore undertaken to examine the presence and characteristics of TCs in normal human thyroid stromal tissue through an integrated morphologic approach featuring light microscopy and ultrastructural analysis. TCs were first identified by immunohistochemistry that revealed the existence of an intricate network of CD34+ stromal cells spread throughout the thyroid interfollicular connective tissue. Double immunofluorescence allowed to clearly differentiate CD34+ stromal cells lacking CD31 immunoreactivity from neighbour CD31+ microvascular structures, and the evidence that these stromal cells coexpressed CD34 and platelet‐derived growth factor receptor α further strengthened their identification as TCs. Transmission electron microscopy confirmed the presence of stromal cells ultrastructurally identifiable as TCs projecting their characteristic cytoplasmic processes (i.e., telopodes) into the narrow interstitium between thyroid follicles and blood microvessels, where telopodes intimately surrounded the basement membrane of thyrocytes. Collectively, these morphologic findings provide the first comprehensive demonstration that TCs are main constituents of the human thyroid stroma and lay the necessary groundwork for further in‐depth studies aimed at clarifying their putative implications in glandular homeostasis and pathophysiology.  相似文献   

14.
Acute cholecystitis is a common disease with gallbladder dysmotility. Disease pathogenesis involves immune cell infiltration as well as changes in gallbladder interstitial Cajal-like cells (ICLCs). However, it remains unclear if or how the immune cells affect ICLC morphology, density, distribution, and function in gallbladder tissue during acute cholecystitis. In this study, we explored the acute cholecystitis-related alterations in gallbladder ICLCs in a guinea pig model, focusing on the effects of neighboring neutrophils. Adult guinea pigs were randomly divided into four groups (control, 24 hr common bile duct ligation [CBDL], 48-hr CBDL, and antipolymorphonuclear neutrophil [PMN] treated) and analyzed using methylene blue staining and immunofluorescence. Gallbladder contractility was also monitored. To culture gallbladder ICLCs, collagenase digestion was performed on tissue from 10- to 15-day-old guinea pigs. Neutrophils isolated from the peripheral blood of experimental animals 48-hr postsurgery were also cocultured with the gallbladder ICLCs. Intracellular calcium was detected with Fluo-4 AM dye. Our results showed that gallbladder ICLC density significantly declined during acute cholecystitis and was accompanied by shortening of the cellular processes and damage to their network-like structure. However, pretreatment with anti-PMN partially prevented these changes. Gallbladder contraction was also significantly decreased during acute cholecystitis, and this appeared to be mediated by the neutrophils. Moreover, ICLCs cocultured with neutrophils also had shortened and reduced processes and impaired network-like structure formation. Intracellular calcium transient was less sensitive to contraction agonists and inhibitors when cocultured with neutrophils. Taken together, neutrophils greatly affect gallbladder ICLCs and dysmotility during acute cholecystitis.  相似文献   

15.
Telocytes (TCs) are a distinct type of interstitial cells, which are featured with a small cellular body and long and thin elongations called telopodes (Tps). TCs have been widely identified in lots of tissues and organs including heart. Double staining for CD34/PDGFR‐β (Platelet‐derived growth factor receptor β) or CD34/Vimentin is considered to be critical for TC phenotyping. It has recently been proposed that CD34/PDGFR‐α (Platelet‐derived growth factor receptor α) is actually a specific marker for TCs including cardiac TCs although the direct evidence is still lacking. Here, we showed that cardiac TCs were double positive for CD34/PDGFR‐α in primary culture. CD34/PDGFR‐α positive cells (putative cardiac TCs) also existed in mice ventricle and human cardiac valves including mitral valve, tricuspid valve and aortic valve. Over 87% of cells in a TC‐enriched culture of rat cardiac interstitial cells were positive for PDGFR‐α, while CD34/PDGFR‐α double positive cells accounted for 30.25% of the whole cell population. We show that cardiac TCs are double positive for CD34/PDGFR‐α. Better understanding of the immunocytochemical phenotypes of cardiac TCs might help using cardiac TCs as a novel source in cardiac repair.  相似文献   

16.
Transmembrane metalloproteinases of the disintegrin and metalloproteinase (ADAM) family control cell signaling interactions via hydrolysis of protein extracellular domains. Prior work has shown that the receptor tyrosine kinase, c-Kit (CD117), is essential for mast cell survival and that serum levels of c-Kit increase in proliferative mast cell disorders, suggesting the existence of c-Kit shedding pathways in mast cells. In the present work, we report that tumor necrosis factor alpha-converting enzyme (TACE; ADAM-17) mediates shedding of c-Kit. Stimulation of transfected cells with phorbol 12-myristate 13-acetate (PMA) induced metalloproteinase-mediated release of c-Kit ectodomain, which increased further upon TACE overexpression. By contrast, TACE-deficient fibroblasts did not demonstrate inducible release, thus identifying TACE as the metalloproteinase primarily responsible for PMA-induced c-Kit shedding. Surface expression of c-Kit by the human mast cell-1 line decreased upon phorbol-induced shedding, which involved metalloproteinase activity susceptible to inhibition by tissue inhibitor of metalloproteinase (TIMP)-3. To further explore the role of TACE in shedding of c-Kit from mast cells, we compared the behavior of mast cells derived from murine embryonic stem cells. In these studies, PMA decreased surface c-Kit levels on mast cells expressing wild-type (+/+) TACE but not on those expressing an inactive mutant (DeltaZn/DeltaZn), confirming the role of TACE in PMA-induced c-Kit shedding. Compared with TACE(+/+) cells, TACE(DeltaZn/DeltaZn) mast cells also demonstrated decreased constitutive shedding and increased basal surface expression of c-Kit, with diminished apoptosis in response to c-Kit ligand deprivation. These data suggest that TACE controls mast cell survival by regulating shedding and surface expression of c-Kit.  相似文献   

17.
Valve interstitial cells (VICs) are responsible for maintaining the structural integrity and dynamic behaviour of the valve. Telocytes (TCs), a peculiar type of interstitial cells, have been recently identified by Popescu's group in epicardium, myocardium and endocardium (visit www.telocytes.com ). The presence of TCs has been identified in atria, ventricles and many other tissues and organ, but not yet in heart valves. We used transmission electron microscopy and immunofluorescence methods (double labelling for CD34 and c‐kit, or vimentin, or PDGF Receptor‐β) to provide evidence for the existence of TCs in human heart valves, including mitral valve, tricuspid valve and aortic valve. TCs are found in both apex and base of heart valves, with a similar density of 27–28 cells/mm2 in mitral valve, tricuspid valve and aortic valve. Since TCs are known for the participation in regeneration or repair biological processes, it remains to be determined how TCs contributes to the valve attempts to re‐establish normal structure and function following injury, especially a complex junction was found between TCs and a putative stem (progenitor) cell.  相似文献   

18.
Dendritic cells are migratory cells. Before they extravasate from the circulation into the skin across capillary blood vessel walls, they have to interact with endothelial cells. Using a fluorimetric adhesion assay, we have recently shown that CD34+-derived dendritic cell precursors are able to bind to resting and stimulated dermal microvascular endothelial cells. In the present study, we attempted to visualize this process at an ultrastructural level. CD34+ progenitor cells were purified from human cord blood samples by means of immunomagnetic beads, and dendritic cells were generated by culture in the presence of GM-CSF, TNF- and hSCF for 5 days. Immature CD83 CD86low dendritic cells were added to human dermal microvascular endothelial cells grown to confluence on membrane chambers. After 2 h, unbound dendritic cell precursors were removed, and bound cells were prepared for routine scanning electron microscopy. We found that (1) dendritic cell precursors firmly adhere to microvascular endothelial cells, enveloping them with their surface processes; (2) dendritic cell precursors are extremely deformable as they squeeze through the dense network of microvascular endothelial cells; (3) microvascular endothelial cells form, in part, a multi-layered network rather than the typical cobblestone pattern as seen by phase-contrast microscopy. The morphology of dendritic cell precursors and of human dermal microvascular endothelial cells was examined here, for the first time, by scanning electron microscopy. These data further emphasize that CD34+-derived dendritic cells efficiently adhere to dermal microvascular endothelial cells.  相似文献   

19.
Ultrastructure of Cajal-like interstitial cells in the human detrusor   总被引:4,自引:0,他引:4  
The aim of this ultrastructural study was to examine the human detrusor for interstitial cells of Cajal (ICC)-like cells (ICC-L) by conventional transmission electron microscopy (TEM) and immuno-transmission electron microscopy (I-TEM) with antibodies directed towards CD117 and CD34. Two main types of interstitial cells were identified by TEM: ICC-L and fibroblast-like cells (FLC). ICC-L were bipolar with slender (0.04 μm) flattened dendritic-like processes, frequently forming a branching labyrinth network. Caveolae and short membrane-associated dense bands were present. Mitochondria, rough endoplasmic reticulum and Golgi apparatus were observed in the cell somata and cytoplasmic processes. Intermediate filaments were abundant but no thick filaments were found. ICC-L were interconnected by close appositions, gap junctions and peg-and-socket junctions (PSJ) but no specialised contacts to smooth muscle or nerves were apparent. FLC were characterised by abundant rough endoplasmic reticulum but no caveolae or membrane-associated dense bands were observed; gap junctions and PSJ were absent and intermediate filaments were rare. By I-TEM, CD34 gold immunolabelling was present in long cytoplasmic processes corresponding to ICC-L between muscle fascicles but CD117 gold immunolabelling was negative. Thus, ICC-like cells are present in the human detrusor. They are CD34-immunoreactive and have a myoid ultrastructure clearly distinguishable from fibroblast-like cells. ICC-L may be analogous to interstitial cells of Cajal in the gut.  相似文献   

20.
Interstitial cells of Cajal in pancreas   总被引:4,自引:0,他引:4  
We show here (presumably for the first time) a special type of cell in the human and rat exocrine pancreas. These cells have phenotypic characteristics of the enteric interstitial cells of Cajal (ICC). To identify pancreatic interstitial cells of Cajal (pICC) we used routine light microscopy, non-conventional light microscopy (less than 1 mum semi-thin sections of Epon-embedded specimens cut by ultramicrotomy and stained with Toluidine blue), transmission electron microscopy (TEM), and immunocytochemistry. The results showed that pICC can be recognized easily by light microscopy, particularly on semi-thin sections, as well as by TEM. Two-dimensional reconstructions from serial photos suggest a network-like spatial distribution of pICC. pICC represent 3.3+/-0.5% of all pancreatic cells, and seem to establish close spatial relationships with: capillaries (43%), acini (40%), stellate cells (14%), nerve fibres (3%). Most of pICC (88%) have 2 or 3 long processes (tens of mum) emerging from the cell body. TEM data show that pICC meet the criteria for positive diagnosis as ICC (e.g. numerous mitochondria, 8.7+/-0.8% of cytoplasm). Immunocytochemistry revealed that pICC are CD117/c-kit and CD34 positive. We found pICC positive (40-50%) for smooth muscle alpha-actin or S-100, and, occasionally, for CD68, NK1 neurokinin receptor and vimentin. The reactions for desmin and chromogranin A were negative in pICC. At present, only hypotheses and speculations can be formulated on the possible role of the pICC (e.g., juxtacrine and/or paracrine roles). In conclusion, the quite-established dogma: "ICC only in cavitary organs" is overpassed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号