首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The developing seed of soybean is susceptible to high temperature and humidity (HTH) stress, resulting in pre-harvest seed deterioration in the field. Many genes are found to respond to the stress. Based on our previous proteomics study, an HTH-responsive gene, GmCDPKSK5, was isolated from soybean seed. GmCDPKSK5 encodes a cytoplasm- and membrane-associated protein, which belongs to Group I of the CDPK family. By yeast two-hybrid (Y2H) from soybean seed cDNA library, GmTCTP was screened as a GmCDPKSK5-interacting protein. The interaction between GmCDPKSK5 and GmTCTP was further verified using bimolecular fluorescence complementation and GST pull down assays. Expression levels of both GmCDPKSK5 and GmTCTP were induced by HTH stress in soybean seed. Our results indicated that GmCDPKSK5 and GmTCTP interact with each other and may function in responses to HTH stress in soybean developing seed.  相似文献   

3.
4.
5.
Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.  相似文献   

6.
7.
8.
9.
Li  Ming  Chen  Rui  Jiang  Qiyan  Sun  Xianjun  Zhang  Hui  Hu  Zheng 《Plant molecular biology》2021,105(3):333-345
Plant Molecular Biology - We found GmNAC06 plays an important role in salt stress responses through the phenotypic, physiological and molecular analyses of OE, VC, and Mutant composite soybean....  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
【背景】暹罗炭疽菌(Colletotrichum siamense)是橡胶炭疽病害的主要致病菌,严重制约着天然橡胶产量。在植物致病真菌中广泛存在同源异型盒转录因子,其参与调控真菌无性生殖、侵染和代谢等诸多方面。【目的】明确在暹罗炭疽菌中鉴定的一个同源异型盒转录因子CsHtf1的生物学功能。【方法】利用同源重组的方法获得Cshtf1基因的敲除突变株,并对其营养生长、孢子产生和致病性等表型进行分析。【结果】Cshtf1基因编码600个氨基酸且含有1个HOX结构域;与野生型相比,Cshtf1敲除突变株营养生长和致病性无显著差异,而突变株分生孢子产量显著降低且黑色素产量增加。【结论】CsHtf1参与调控暹罗炭疽菌的分生孢子及黑色素产生。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号