首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mineral transport across the plasma membrane of plant cells is controlled by an electrochemical gradient of protons. This gradient is generated by an ATP-consuming enzyme in the membrane known as a proton pump, or H+-ATPase. The protein has a catalytic subunit of Mr=100,000 and is a prominent band when plasma membrane proteins are analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We generated specific rabbit polyclonal antibody against the Mr=100,000 H+-ATPase and used the antibody to screen λgtll expression vector libraries of plant DNA. Several phage clones producing immunoreactive protein, and presumably containing DNA sequences for the ATPase structural gene, were isolated and purified from a carrot cDNA library and a Arabidopsis genomic DNA library. These studies represent our first efforts at cloning the structural gene for a plant plasma membrane transport protein. Applicability of the technique to other transport protein genes and the potential for use of recombinant DNA technology in plant mineral transport research are discussed.  相似文献   

2.
Large-scale isolation of the Neurospora plasma membrane H+-ATPase   总被引:3,自引:0,他引:3  
A method for the purification of relatively large quantities of the Neurospora crassa plasma membrane proton translocating ATPase is described. Cells of the cell wall-less sl strain of Neurospora grown under O2 to increase cell yields are treated with concanavalin A to stabilize the plasma membrane and homogenized in deoxycholate, and the resulting lysate is centrifuged at 13,500g. The pellet obtained consists almost solely of concanavalin A-stabilized plasma membrane sheets greatly enriched in the H+-ATPase. After removal of the bulk of the concanavalin A by treatment of the sheets with alpha-methylmannoside, the membranes are treated with lysolecithin, which preferentially extracts the H+-ATPase. Purification of the lysolecithin-solubilized ATPase by glycerol density gradient sedimentation yields approximately 50 mg of enzyme that is 91% free of other proteins as judged by quantitative densitometry of Coomassie blue-stained gels. The specific activity of the enzyme at this stage is about 33 mumol of P1 released/min/mg of protein at 30 degrees C. A second glycerol density gradient sedimentation step yields ATPase that is about 97% pure with a specific activity of about 35. For chemical studies or other investigations that do not require catalytically active ATPase, virtually pure enzyme can be prepared by exclusion chromatography of the sodium dodecyl sulfate-disaggregated, gradient-purified ATPase on Sephacryl S-300.  相似文献   

3.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

4.
5.
Protein chemistry of the Neurospora crassa plasma membrane H+-ATPase   总被引:1,自引:0,他引:1  
A highly effective procedure for fragmenting the Neurospora crassa plasma membrane H+-ATPase and purifying the resulting peptides is described. The enzyme is cleaved with trypsin to form a limit digest containing both hydrophobic and hydrophilic peptides, and the hydrophobic and hydrophilic peptides are then separated by extraction with an aqueous ammonium bicarbonate solution. The hydrophilic peptides are fractionated by Sephadex G-25 column chromatography into three pools, and the individual peptides in each pool are purified by high-performance liquid chromatography. The hydrophobic peptides are dissolved in neat trifluoroacetic acid (TFA), diluted with chloroform-methanol (1:1), and the hydrophobic peptide solution thus obtained is then fractionated by Sephadex LH-60 column chromatography in chloroform-methanol (1:1) containing 0.1% TFA. The recoveries in all of the above procedures are greater than 90%. The N-terminal amino acid sequences of three of the hydrophobic H+-ATPase peptides purified by this methodology have been determined, which establishes the position of these peptides in the 100,000 Da polypeptide chain by reference to the published gene sequence, and documents the sequencability of the hydrophobic peptides purified in this way. This methodology should facilitate the identification of a variety of amino acid residues important for the structure and function of the H+-ATPase molecule. Moreover, the overall strategy for working with the protein chemistry of the H+-ATPase should be applicable to other amphiphilic integral membrane proteins as well.  相似文献   

6.
We demonstrated previously that acetylated tubulin inhibits plasma membrane Ca2 +-ATPase (PMCA) activity in plasma membrane vesicles (PMVs) of rat brain through a reversible interaction. Dissociation of the PMCA/tubulin complex leads to restoration of ATPase activity. We now report that, when the enzyme is reconstituted in phosphatidylcholine vesicles containing acidic or neutral lipids, tubulin not only loses its inhibitory effect but is also capable of activating PMCA. This alteration of the PMCA-inhibitory effect of tubulin was dependent on concentrations of both lipids and tubulin. Tubulin (300 μg/ml) in combination with acidic lipids at concentrations > 10%, increased PMCA activity up to 27-fold. The neutral lipid diacylglycerol (DAG), in combination with 50 μg/ml tubulin, increased PMCA activity > 12-fold, whereas tubulin alone at high concentration (≥ 300 μg/ml) produced only 80% increase. When DAG was generated in situ by phospholipase C incubation of PMVs pre-treated with exogenous tubulin, the inhibitory effect of tubulin on PMCA activity (ATP hydrolysis, and Ca2 + transport within vesicles) was reversed. These findings indicate that PMCA is activated independently of surrounding lipid composition at low tubulin concentrations (< 50 μg/ml), whereas PMCA is activated mainly by reconstitution in acidic lipids at high tubulin concentrations. Regulation of PMCA activity by tubulin is thus dependent on both membrane lipid composition and tubulin concentration.  相似文献   

7.
M Vai  L Popolo  L Alberghina 《FEBS letters》1986,206(1):135-141
The plasma membrane H+-ATPases from fungi and yeasts have similar catalytic and molecular properties. A structural comparison has been performed using immunoblot analysis with polyclonal antibodies directed toward the 102 kDa polypeptide of the plasma membrane H+-ATPase from Neurospora crassa. A strong cross-reactivity is observed between the fungal H+-ATPase and the enzyme from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Structural homologies are indicated also by the analysis of the cross-reactive peptides originated by proteolytic digestion of Neurospora and S. cerevisiae purified enzymes. Neither enzyme from these two sources appears to be glycosylated by a highly sensitive concanavalin A affinity assay on blotted proteins. A glycoprotein of Mr 115000 and pI 4.8-5, which comigrates with a cell cycle-modulated protein on 2D gel, is present in partially purified preparations of plasma membrane H+-ATPase of S. cerevisiae and it is shown to be structurally unrelated to H+-ATPase.  相似文献   

8.
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.  相似文献   

9.
The effect of vacuolar H(+)-ATPase (V-ATPase) null mutations on the targeting of the plasma membrane H(+)-ATPase (Pma1p) through the secretory pathway was analyzed. Gas1p, which is another plasma membrane component, was used as a control for the experiments with Pma1p. Contrary to Gas1p, which is not affected by the deletion of the V-ATPase complex in the V-ATPase null mutants, the amount of Pma1p in the plasma membrane is markedly reduced, and there is a large accumulation of the protein in the endoplasmic reticulum. Kex2p and Gef1p, which are considered to reside in the post-Golgi vesicles, were suggested as required for the V-ATPase function; hence, their null mutant phenotype should have been similar to the V-ATPase null mutants. We show that, in addition to the known differences between those yeast phenotypes, deletions of KEX2 or GEF1 in yeast do not affect the distribution of Pma1p as the V-ATPase null mutant does. The possible location of the vital site of acidification by V-ATPase along the secretory pathway is discussed.  相似文献   

10.
The structure of the Neurospora crassa plasma membrane H+-ATPase has been investigated using a variety of chemical and physicochemical techniques. The transmembrane topography of the H+-ATPase has been elucidated by a direct, protein chemical approach. Reconstituted proteoliposomes containing purified H+-ATPase molecules oriented predominantly with their cytoplasmic surface facing outward were treated with trypsin, and the numerous peptides released were purified by HPLC and subjected to amino acid sequence analysis. In this way, seventeen released peptides were unequivocally identified as located on the cytoplasmic side of the membrane, and numerous intervening segments could be inferred to be cytoplasmically located by virtue of the fact that they are too short to cross the membrane and return between sequences established to be cytoplasmically located. Additionally, three large membrane-embedded segments of the H+-ATPase were isolated using our recently developed methods for purifying hydrophobic peptides, and identified by amino acid sequence analysis. This information established the topographical location of virtually all of the 919 residues in the H+-ATPase molecule, allowing the formulation of a reasonably detailed model for the transmembrane topography of the H+-ATPase polypeptide chain. Separate studies of the cysteine chemistry of the H+-ATPase have demonstrated the existence of a single disulfide bridge in the molecule, linking the NH2- and COON-terminal membrane-embedded domains. And, analyses of the circular dichroism and infrared spectra of the purified H+-ATPase have elucidated the secondary structure composition of the molecule. A first-generation model for the tertiary structure of the H+-ATPase based on this information and other considerations is presented.  相似文献   

11.
Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase   总被引:1,自引:0,他引:1  
The plant plasma membrane proton pump (H(+)-ATPase) is stimulated by potassium, but it has remained unclear whether potassium is actually transported by the pump or whether it serves other roles. We now show that K(+) is bound to the proton pump at a site involving Asp(617) in the cytoplasmic phosphorylation domain, from where it is unlikely to be transported. Binding of K(+) to this site can induce dephosphorylation of the phosphorylated E(1)P reaction cycle intermediate by a mechanism involving Glu(184) in the conserved TGES motif of the pump actuator domain. Our data identify K(+) as an intrinsic uncoupler of the proton pump and suggest a mechanism for control of the H(+)/ATP coupling ratio. K(+)-induced dephosphorylation of E(1)P may serve regulatory purposes and play a role in negative regulation of the transmembrane electrochemical gradient under cellular conditions where E(1)P is accumulating.  相似文献   

12.
The sensitivity of the plasma membrane H+-ATPase in tobacco was investigated in vitro, both at the proton translocation level and the ATPase level, according to plant development and leaf location. Both activities are stimulated by auxin in all leaves, whatever the plant age and the leaf age. However, the sensitivity to auxin was heterogeneous with respect to plant development and leaf location. In parallel experiments using the same plasma membrane samples, polypepides patterns were investigated by two-dimensional gel electrophoresis and image analysis was used to quantify the relative abundance of 110 peptides. Systematic analysis of the two kinds of data identified 8 polypeptides, the abundance of which changed in a consistent way with the sensitivity, whatever the plant developmental state and leaf location. These unknown polypeptides are proposed as potential markers of the membrane response to auxin.  相似文献   

13.
Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.  相似文献   

14.
The plasma membrane H(+)-ATPase generates an electrochemical gradient of H(+) across the plasma membrane that provides the driving force for solute transport and regulates pH homeostasis and membrane potential in plant cells. Recent studies have demonstrated that phosphorylation of the penultimate threonine in H(+)-ATPase and subsequent binding of a 14-3-3 protein is the major common activation mechanism for H(+)-ATPase in vascular plants. However, there is very little information on the plasma membrane H(+)-ATPase in nonvascular plant bryophytes. Here, we show that the liverwort Marchantia polymorpha, which is the most basal lineage of extant land plants, expresses both the penultimate threonine-containing H(+)-ATPase (pT H(+)-ATPase) and non-penultimate threonine-containing H(+)-ATPase (non-pT H(+)-ATPase) as in the green algae and that pT H(+)-ATPase is regulated by phosphorylation of its penultimate threonine. A search in the expressed sequence tag database of M. polymorpha revealed eight H(+)-ATPase genes, designated MpHA (for M. polymorpha H(+)-ATPase). Four isoforms are the pT H(+)-ATPase; the remaining isoforms are non-pT H(+)-ATPase. An apparent 95-kD protein was recognized by anti-H(+)-ATPase antibodies against an Arabidopsis (Arabidopsis thaliana) isoform and was phosphorylated on the penultimate threonine in response to the fungal toxin fusicoccin in thalli, indicating that the 95-kD protein contains pT H(+)-ATPase. Furthermore, we found that the pT H(+)-ATPase in thalli is phosphorylated in response to light, sucrose, and osmotic shock and that light-induced phosphorylation depends on photosynthesis. Our results define physiological signals for the regulation of pT H(+)-ATPase in the liverwort M. polymorpha, which is one of the earliest plants to acquire pT H(+)-ATPase.  相似文献   

15.
Liposomes prepared by sonication of asolectin were fractionated by glycerol density gradient centrifugation, and the small liposomes contained in the upper region of the gradients were used for reconstitution of purified, radiolabeled Neurospora plasma membrane H+-ATPase molecules by our previously published procedures. The reconstituted liposomes were then subjected to two additional rounds of glycerol density gradient centrifugation, which separate the H+-ATPase-bearing proteoliposomes from ATPase-free liposomes by virtue of their greater density. The isolated H+-ATPase-bearing proteoliposomes in two such preparations exhibited a specific H+-ATPase activity of about 11 mumol of Pi liberated/mg of protein/min, which was approximately doubled in the presence of nigericin plus K+, indicating that a large percentage of the H+-ATPase molecules in both preparations were capable of generating a transmembrane protonic potential difference sufficient to impede further proton translocation. Importantly, quantitation of the number of 105,000-dalton ATPase monomers and liposomes in the same preparations by radioactivity determination and counting of negatively stained images in the electron microscope indicated ATPase monomer to liposome ratios of 0.97 and 1.06. Because every liposome in the preparations must have had at least one ATPase monomer, these ratios indicate that very few of the liposomes had more than one, and simple calculations show that the great majority of active ATPase molecules in the preparations must have been present as proton-translocating monomers. The results thus clearly demonstrate that 105,000-dalton monomers of the Neurospora plasma membrane H+-ATPase can catalyze efficient ATP hydrolysis-driven proton translocation.  相似文献   

16.
17.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM Plasma membrane - pHi intracellular pH - Pi inorganic phosphorus - TET Toluene: Ethanol: Triton X-100  相似文献   

18.
The molecular architecture of the yeast plasma membrane H(+)-ATPase phosphorylation region was explored by Fe(2+)-catalyzed cleavage. An ATP-Mg(2+).Fe(2+) complex was found to act as an affinity cleavage reagent in the presence of dithiothreitol/H(2)O(2). Selective enzyme cleavage required bound adenine nucleotide, either ATP or ADP, in the presence of Mg(2+). The fragment profile included a predominant N-terminal 61-kDa fragment, a minor 37-kDa fragment, and three prominent C-terminal fragments of 39, 36, and 30 kDa. The 61-kDa N-terminal and 39-kDa C-terminal fragments were predicted to originate from cleavage within the conserved MLT(558)GDAVG sequence. The 37-kDa fragment was consistent with cleavage within the S4/M4 sequence PVGLPA(340)V, while the 30-kDa and 36-kDa C-terminal fragments appeared to originate from cleavage in or around sequences D(646)TGIAVE and DMPGS(595)ELADF, respectively. The latter are spatially close to the highly conserved motif GD(634)GVND(638)APSL and conserved residues Thr(558) and Lys(615), which have been implicated in coordinating Mg(2+) and ATP. Overall, these results demonstrate that Fe(2+) associated with ATP and Mg(2+) acts as an affinity cleavage agent of the H(+)-ATPase with backbone cleavage occurring in conserved regions known to coordinate metal-nucleotide complexes. This study provides support for a three-dimensional organization of the phosphorylation region of the yeast plasma membrane H(+)-ATPase that is consistent with, but not identical to, typical P-type enzymes.  相似文献   

19.
S Ulaszewski  F Hilger  A Goffeau 《FEBS letters》1989,245(1-2):131-136
The thermosensitive G1-arrested cdc35-10 mutant from Saccharomyces cerevisiae, defective in adenylate cyclase activity, was shifted to restrictive temperature. After 1 h incubation at this temperature, the plasma membrane H+-ATPase activity of cdc35-10 was reduced to 50%, whereas that in mitochondria doubled. Similar data were obtained with cdc25, another thermosensitive G1-arrested mutant modified in the cAMP pathway. In contrast, the ATPase activities of the G1-arrested mutant cdc19, defective in pyruvate kinase, were not affected after 2 h incubation at restrictive temperature. In the double mutants cdc35-10 cas1 and cdc25 cas1, addition of extracellular cAMP prevented the modifications of ATPase activities observed in the single mutants cdc35-10 and cdc25. These data indicate that cAMP acts as a positive effector on the H+-ATPase activity of plasma membranes and as a negative effector on that of mitochondria.  相似文献   

20.
Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号