首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Large genetic variations in starvation tolerance in animals indicate that there are multiple strategies to cope with low‐nutrient conditions. Fruit flies (Drosophila melanogaster) typically respond to starvation by suppressing sleep and enhancing locomotor activity presumably to search for food. However, we hypothesized that in a natural population, there are costs and benefits to sleep suppression under low‐nutrient conditions and that conserving energy through sleep could be a better strategy depending on food availability. In this study, we quantified the variation in sleep‐related traits in 21 wild‐derived inbred lines from Katsunuma, Japan, under fed and starved conditions and analysed the relationship between those traits and starvation tolerance. Although most of the lines responded to starvation by suppressing the total time in sleep, there were indeed two lines that responded by significantly increasing the sleep‐bout durations and thus not reducing the total time in sleep. These genotypes survived longer in acute starvation conditions compared to genotypes that responded by the immediate suppression of sleep, which could be due to the reduced metabolic rate during the long uninterrupted sleep bouts. The coexistence of the enhanced foraging and resting strategies upon starvation within a single population is consistent with the presence of a behavioural trade‐off between food search and energy conservation due to unpredictable food availability in nature. These results provide insights into the evolutionary mechanisms that contribute to the maintenance of genetic variations underlying environmental stress resistance.  相似文献   

3.
Abstract. The effects of single meals of different sucrose concentrations on feeding responses and survival of 8–24-h-old, 1–2-, 10–12- and 31–36-day-old female and male western cherry fruit flies, Rhagoletis indifferens Curran, were determined. Feeding time and food consumption response patterns in both sexes within age groups were curvilinear. Feeding times increased as sucrose concentrations increased, and were longest when the sucrose concentration was 100% (dry). Consumption of dilute wet sucrose was low, whereas consumption of concentrated wet sucrose was high. However, consumption of dry, 100% sucrose was also low. One to 2-day-old flies of both sexes that had not previously fed consumed more sucrose foods than unfed 8–24-h-old flies and 10–12- and 31–36-day-old flies that had been starved for 16–24 h. Females consumed more than males, but they consumed the same amount as males per mg bodyweight. When fed single 20% and 60% sucrose meals, 1–2-day-old flies survived longer compared to flies in all other age groups, with 31–36-day-old flies surviving shortest. Despite age-related differences in survival, in general, no sex differences in survival were seen in flies fed sucrose within any age groups, or in flies fed sucrose-yeast, cherry juice and honeydew foods. The results suggest that sugar-feeding behaviours and the energy invested in sugar 'seeking' by both sexes of R. indifferens should be the same throughout life.  相似文献   

4.
Abstract:  Effects of feeding history on feeding responses of western cherry fruit fly, Rhagoletis indifferens Curran, to the commercial protein baits GF-120 and Nulure were determined in the laboratory. Flies were kept on 5% sucrose alone or yeast extract and sucrose (Y + S) for 3–7 or 14–16 days and exposed to 24-h-old GF-120 or Nulure drops on artificial leaves. Numbers and durations of feeding events on leaves and durations of non-feeding events were recorded over 1-h periods. Experiments were also conducted to determine effects of Y + S feeding sequences on responses to Nulure, of starvation after sucrose or Y + S feeding on responses to Nulure, and of feeding history on mortality after exposure to GF-120 and Nulure. Protein-deprived flies consistently fed more times on GF-120 and Nulure than protein-fed flies and fed longer. One day of exposure to Y + S or 16 h of starvation after exposure to sucrose caused greater feeding on Nulure than 7 days of exposure to Y + S or 16 h of starvation after exposure to Y + S. Durations of non-feeding events on leaves with sucrose or bait were similar in protein-deprived and -fed flies. Responses of 4- to 6-day-old flies kept on sucrose to 0- and 24-h-old GF-120 or Nulure were similar. More flies kept on sucrose were paralysed or dead at 6–32 h after exposure to GF-120 or Nulure with spinosad than flies kept on Y + S. Results show that complete or long periods of protein deprivation and starvation after sucrose feeding increased feeding responses to GF-120 and Nulure. The general lack of differences in durations of non-feeding events on leaves with sucrose or GF-120 or Nulure in protein-deprived and -fed flies suggests that most protein-deprived flies found baits through chance encounters following normal movement.  相似文献   

5.
Tetrahymena pyriformis GL was starved for 24 h and then the immunologically demonstrable insulin content and FITC-insulin binding were measured by flow cytometry and localization was studied by confocal microscopy. The amount of endogeneous insulin as well as FITC insulin binding, was highly significantly elevated. Glucose feeding for 30 min abolished the elevation of FITC-insulin binding. In starved cells, insulin-binding sites disappeared from the surface and FITC-insulin was bound inside the cells, within large food vacuoles. Endogeneous insulin was dispersed in the cytoplasm both in the control and starved cells and food vacuoles did not contain it. The results call attention to the stimulatory effect of starvation on insulin production in Tetrahymena, in parallel with the internal storage of insulin receptors, which points to an autocrine mechanism.  相似文献   

6.
FITC-insulin binding and endogenous insulin content of Tetrahymena pyriformis, that had been 24 h or 30 min starved, continuously fed or re-fed after starvation was studied by flow cytometry and confocal microscopy. Long starvation elevated both insulin binding and endogenous insulin content of the cells. Short re-feeding after long starvation or short starvation after continuous feeding does not change the situation. Fixed cells also bind FITC-insulin, however, in this case long starvation reduces, and re-feeding after long starvation elevates, the binding, which means that hormone binding by receptors only differs from receptor binding and engulfment (in living cells). The increase of FITC-insulin content in living cells seems to be due to engulfment, rather than by receptor binding. The results point to the unicellular organism's requirement for insulin production and binding in a life-threatening stress situation.  相似文献   

7.
Ultrastructural changes in the intestinal epithelium of fed and starved specimens of Spadella cephaloptera are described. Animals were maintained in a circulating natural sea water system and fed with Artemia salina nauplii. After a period of acclimation, they were individually isolated, deprived of food for 24 h and submitted to controlled feeding experiments. The absorption develop in the intestinal absorptive cells (A-cells) 5 min after the ingestion of prey and consist in the formation of endocytotic vesicles and endosome-like vacuoles. During the following steps up to 10 h, a second type of digestive vacuole containing electron-dense material, and probably corresponding to a lysosome-like compartment, appears. Throughout this time, the vacuoles progressively arrange in columns, the youngest at the top and the oldest at the bottom of the A-cells. In addition, large lipid inclusions appear in the apical cytoplasm. The ultrastructural changes of the intestinal secretory cells (S-cells) is less marked, but the number of granules largely diminishes during the first 30 min after the ingestion of prey. In starved specimens, major changes in A-cells occur between the sixth and tenth day of starvation and consist in the increase of endosome-like vacuoles. Lysosome-like vacuoles containing dense material are not observed. At the same time, necrosis features are evident in S-cells. After 30 days of starvation, necrosis features are observed in the totality of the intestinal epithelium and the specimens die few days later.  相似文献   

8.
Consumption of foods that are high in fat contribute to obesity and metabolism‐related disorders. Dietary lipids are comprised of triglycerides and fatty acids, and the highly palatable taste of dietary fatty acids promotes food consumption, activates reward centers in mammals and underlies hedonic feeding. Despite the central role of dietary fats in the regulation of food intake and the etiology of metabolic diseases, little is known about how fat consumption regulates sleep. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and metabolic traits, and flies potently regulate sleep in accordance with food availability. To investigate the effects of dietary fats on sleep regulation, we have supplemented fatty acids into the diet of Drosophila and measured their effects on sleep and activity. We found that flies fed a diet of hexanoic acid, a medium‐chain fatty acid that is a by‐product of yeast fermentation, slept more than flies starved on an agar diet. To assess whether dietary fatty acids regulate sleep through the taste system, we assessed sleep in flies with a mutation in the hexanoic acid receptor Ionotropic receptor 56D, which is required for fatty acid taste perception. We found that these flies also sleep more than agar‐fed flies when fed a hexanoic acid diet, suggesting the sleep promoting effect of hexanoic acid is not dependent on sensory perception. Taken together, these findings provide a platform to investigate the molecular and neural basis for fatty acid‐dependent modulation of sleep.  相似文献   

9.
10.
Adult females of the cockroach Blattella germanica have clearly-defined feeding cycles related to oogenesis. In the first cycle, food ingestion precedes volumetric increase in the corpora allata, which in turn precedes juvenile hormone production, whereas starved females do not develop the corpora allata and produce very low amounts of juvenile hormone. When the second gonadotropic cycle is provoked by removing the ootheca, the first event observed is an increase in food consumption, followed by an increase in corpora allata volume and activity. However, this increase in corpora allata volume (and activity) does not occur if females are starved, thus indicating that the ootheca in the genital chamber inhibits primarily feeding, and indirectly corpora allata development and activity. Corpora allata volume in isolated heads from starved and decapitated females was able to increase to levels similar to fed controls, but this increase was abolished by allatostatin treatment. We suggest that a factor produced in the thoracico-abdominal compartment, which reaches the head mainly through a nervous pathway, is released during starvation and inhibits corpora allata development. This factor may stimulate allatostatin production or release, or may well be allatostatin itself.  相似文献   

11.
Nectarivorous birds encounter varying nectar concentrations while foraging on different food plants and must adjust their consumption to maintain constant energy intake. We determined how rapidly captive whitebellied sunbirds (Cinnyris talatala) adjust their volumetric intake and feeding patterns after changes in diet concentration. On four consecutive days, birds were fed sucrose diets alternating between a standard diet of 16% w/w and test diets of 2.5, 8.5, 16 or 30% w/w, respectively, for 1.5 h periods. Feeding events were recorded with an infrared photo-detection system and food intake and body mass were monitored continuously by electronic balances interfaced to a computer. Generally, birds demonstrated a measurable increase in feeding frequency and food intake within 10 min after a decrease in sucrose concentration. However, individuals responded differently to the most dilute diet (2.5%): while most increased their food intake, others stopped feeding for a short while, appearing to dislike this diet. Furthermore, the number and duration of feeding events increased in the first 5 min after the switch from 2.5% back to 16%, as the birds attempted to compensate for previous reduced sugar intake. Daily sugar intake was lower when birds alternated between 2.5 and 16% diets than on other test days, but birds were able to maintain body mass, presumably through behavioural adjustments.  相似文献   

12.
The blood volume increased during normal feeding, and did not decrease during fasting at the end of the stadium. The unexpectedly high blood volume of starved crickets might be an adaptation to increase chances for moulting via stretch receptor stimulation.The amount of blood amino acids was not changed by feeding, but increased with fasting or starvation. Thus amino acid levels in the blood were not directly related to amino acid input from the gut.The blood protein concentration did not change during starvation, but the amino acid concentration was 33% higher in starved crickets that drank water as opposed to those given saline to drink. Thus amino acid levels in the blood were not related directly to blood protein concentration.The blood amino acid concentration was 19–22 mM/l in response to salt intake by feeding crickets or starved crickets drinking saline. The concentration was 32–38 mM/l when the crickets were fasting prior to and after ecdysis or when starved with water to drink during the time when they would normally be feeding. The increase of amino acids during fasting was due to a proportional increase in all amino acids augmented by a 3 × increase in tyrosine. The increase during salt depleting starvation was due to a doubling of the two predominant amino acids proline and glycine. Proline and glycine were not increased in starved crickets drinking saline, thus starvation was not the reason for the increase. This is the first instance where specific amino acids have been implicated in osmoregulation.  相似文献   

13.
在室内条件下,将大鵟作为艾虎的天敌动物,通过双通道选择实验确定6 只成体艾虎在3 个捕食风险水平和4 种饥饿状态条件下的取食行为,探讨艾虎在取食过程中对饥饿风险与捕食风险的权衡策略。研究结果表明:在无捕食风险存在时,艾虎被剥夺食物0 d 和1 d 后对食物量不同的两个斑块中的取食量和利用频次均无明显不同(P > 0. 05),但对高食物量斑块的利用时间均明显高于低食物量斑块的(P <0.05),而艾虎被剥夺食物2 d和3 d后对高食物量斑块中的取食量和利用时间均明显高于低食物量斑块中的(P < 0.05),但在利用频次上均无明显差异(P > 0.05)。在面临低风险时,艾虎在4 种饥饿状态下均只利用无天敌动物存在的低食物量斑块,而基本不利用有天敌动物存在的高食物量斑块。在面临高风险时,艾虎不得不利用有天敌动物存在的食物斑块,被剥夺食物0 d 时艾虎对无风险、无食物量斑块的利用时间基本相同于对高风险、有食物量斑块的利用时间(P>0.05),而被剥夺食物1d、2 d 和3 d 后艾虎对高风险、有食物量斑块的利用时间明显高于无风险、无食物量斑块的(P< 0. 05)。在相同风险条件下,随着饥饿程度增加,艾虎在斑块中的取食量均明显增加(P< 0.05),而对斑块的利用时间和利用频次明显降低(P<0.05)。在相同的饥饿状态下,不同风险水平时,艾虎在斑块中的取食量无明显的差异(P>0.05),但在低风险和高风险时对斑块的利用时间和频次均明显低于无风险时的(P <0.05)。以上结果说明艾虎能够根据食物摄取率和自身的能量需求在捕食风险和饥饿风险之间做出权衡,当饥饿风险小于捕食风险时,艾虎趋于躲避捕食风险,当饥饿风险大于捕食风险时,艾虎趋于面对捕食风险,所采用的取食策略是减少活动时间和能量消耗,最大程度地提高单位时间内获得的能量。  相似文献   

14.
This study investigated the influence of feeding frequency on the activities of important degradative enzymes and potentially rate-limiting enzymes in glycolysis and gluconeogenesis in the liver and white epaxial muscle of Macquaria ambigua . Adult animals were either fed daily to satiety (fed), deprived of food for up to 180 days (starved), or starved for 150 days then fed daily to satiety for 30 days (starved/fed). The activities of lipolytic, glycogenolytic and glycolytic enzymes in the livers of starved fish were maintained as long as liver energy stores were available, but became significantly reduced following their exhaustion indicating a decline in metabolism in response to prolonged starvation. The response of epaxial muscle metabolism to changes in food availability was different to that of the liver, as no significant change in the activities of muscle lipolytic or glycogenolytic enzymes were observed in response to starvation. Muscle tissue metabolism was reduced after 60–90 days of starvation, but then returned to prestarvation levels.  相似文献   

15.
16.

Background

A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. Drosophila melanogaster is an important model for the study of metabolism and behaviour, however the effect of diet upon Drosophila sleep remains largely unaddressed.

Methodology/Principal Findings

Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon Drosophila sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep.

Conclusions

We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight Drosophila as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans.  相似文献   

17.
Activity (to food, water and shelter) and resource allocation (mass budget, and size of various body components) were examined in populations of adult Periplaneta americana subjected to periods of starvation or sugar feeding. Following 13 days of starvation, roaches ate 5 times their normal daily ration and feeding required about 20 days to return to pre-starvation levels. When sucrose was substituted for the usual dog-food diet for 13 days, there was also a large increase in feeding initially. When the dog food was re-established, however, there was very little feeding for about one week. Although reproduction was markedly curtailed by starvation, females fed sucrose continued reproducing for at least 59 days. The results suggested that the roaches were mainly energy limited. Although the consumption of roaches was strongly affected by reserve depletion, eating was a small component of the time budget, and overall activity was relatively unchanged by starvation or sugar-feeding. There was a slight decrease in activity during starvation, but the circadian pattern remained unchanged. Females carrying oöthecae were highly active and were apparently attracted to food (even though they ate little). Thus the activity of the population was dominated by circadian rhythmicity and the reproductive cycle.  相似文献   

18.
Embryos of pea (Pisum sativum L. cv Sol) deprived of cotyledons were cultured for 3 days in medium with or without sucrose. Respiratory activity of embryos (intact) as well as the ability to oxidize glutamate by mitochondria isolated from embryos were studied. Respiration of intact embryos grown in sucrose supplemented medium was more intensive than in the starved ones. Transfer of the starved embryos to the sucrose-containing medium induced the increase in the intensity of O2 consumption. Mitochondria isolated from both starved and control embryos exhibited respiratory control. Mitochondria isolated from embryos cultured in the absence of sucrose showed higher (about 60 %) ability to oxidize glutamate and α-ketoglutarate than mitochondria from embryos grown in sucrose containing medium. The absence of sucrose in the medium led to a rapid increase in the specific activity of glutamate dehydrogenase (NADH-GDH and NAD-GDH) and it was accompanied by changes in izoenzymatic pattern of enzyme. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase may be responsible for the increase of glutamate oxidation by mitochondria of pea embryos. Electrophoretic separation of glutamate dehydrogenase isolated from embryos cultured in medium without sucrose showed the presence of ca. 17 isoenzymes while in non-starved embryos only 7 isoenzymes were identified. However, the addition of sucrose to starved embryos after 24 hours of cultivation led to a decrease in glutamate dehydrogenase activity (up to 40 %) but it did not cause the changes in isoenzymatic pattern. These results suggest that in the conditions of sucrose starvation glutamate dehydrogenase maybe responsible for the increase of glutamate oxidation by mitochondria of pea embryos. The posibility of glutamate dehydrogenase regulation by sucrose is discussed.  相似文献   

19.
饥饿对东亚飞蝗生长和取食的影响   总被引:1,自引:0,他引:1  
研究了不同龄期东亚飞蝗Locusta migratoria manilensis(Meyen)的耐饥饿能力和3龄后的东亚飞蝗在不同饥饿程度下的取食量和取食速度。结果表明,东亚飞蝗的耐饥饿能力基本随龄期的增加而增强,平均耐饥饿时间为46~116h;同一龄期的东亚飞蝗,饥饿12h后的取食量和取食速度均大于正常情况,饥饿24h后的取食量和取食速度与正常情况下差异不显著,饥饿36、48h后的取食量和取食速度均明显小于正常情况;饥饿程度越大,取食量就越小,取食速度越慢。  相似文献   

20.
Commitment to autogamy blocks mating reactivity in Paramecium. Cells which had previously developed mating reactivity, lost reactivity 30-90 min prior to the preautogamous fission. Mating reactivity develops at a standard level of starvation when cells are allowed to exhaust their food supply naturally. In abruptly starved cultures, mating reactivity appears 3.3 h after downshift. Autogamy is also triggered by starvation. The level of starvation required for initiation of autogamy decreases progressively as cells age. When the autogamy starvation threshold drops to such a low level that all cells become committed to autogamy before any of them develop mating reactivity, reactivity does not occur under natural starvation conditions and the period of maturity for conjugation has come to an end. There is no absolute immature period for autogamy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号